Robots, Virtual Reality & Other "Smart" Tools Soon Will Help Physicians Heal Patients

December 19, 1996

Voice-controlled surgical instruments; navigational systems to guide surgical tools; three-dimensional images projected onto patients in the operating room; and physicians thousands of miles apart participating in live surgery -- these are among early 21st century technologies doctors and engineers are dreaming about and developing now.

"We're encouraging close collaboration between engineers and surgeons to rapidly develop research and technology that can provide more precise information and procedures in the doctor's office and the operating room," says Gilbert Devey, a National Science Foundation (NSF) program director in biomedical engineering. "We hope soon to see new, sophisticated systems that physicians can use to improve patient care and, in many cases, even lower the cost of treatment."

Plans for new surgical simulations, image-guided therapies, robotics and teleinterventions are described in a new 135-page report, edited by Anthony M. DiGioia, Takeo Kanade and Peter Wells. The report summarizes the findings of the Second International Workshop on Robotics and Computer Assisted Medical Interventions, held in Bristol, England, June 23-26, 1996.

DiGioia directs the Center for Orthopaedic Research at Shadyside Hospital in Pittsburgh. He and Kanade co-direct the Center for Medical Robotics and Computer-Assisted Surgery at Carnegie Mellon University. Wells is a research director of radiologic services at Bristol General Hospital, England.

Organized by DiGioia and supported by NSF, the workshop convened 52 engineering, computer science and medical researchers from seven nations, nominated by their peers, to assess the status and research needs of this rapidly advancing field.

"We are not talking about replacing physicians, but providing them with more precise tools that take advantage of physicians' skills," says DiGioia. "By coupling the power of these emerging technologies with human skills, we hope to improve our patients' outcomes. Reducing complications and making procedures more precise and less invasive should result in faster recoveries and less need for repeat surgery," he says.

Support for the June workshop was provided by NSF, the Defense Advanced Research Projects Agency (DARPA), and various commercial partners, and hosted by the United Kingdom's Engineering and Physical Science Research Council. A follow-up workshop is being planned for 1999.
-end-


National Science Foundation

Related Engineering Articles from Brightsurf:

Re-engineering antibodies for COVID-19
Catholic University of America researcher uses 'in silico' analysis to fast-track passive immunity

Next frontier in bacterial engineering
A new technique overcomes a serious hurdle in the field of bacterial design and engineering.

COVID-19 and the role of tissue engineering
Tissue engineering has a unique set of tools and technologies for developing preventive strategies, diagnostics, and treatments that can play an important role during the ongoing COVID-19 pandemic.

Engineering the meniscus
Damage to the meniscus is common, but there remains an unmet need for improved restorative therapies that can overcome poor healing in the avascular regions.

Artificially engineering the intestine
Short bowel syndrome is a debilitating condition with few treatment options, and these treatments have limited efficacy.

Reverse engineering the fireworks of life
An interdisciplinary team of Princeton researchers has successfully reverse engineered the components and sequence of events that lead to microtubule branching.

New method for engineering metabolic pathways
Two approaches provide a faster way to create enzymes and analyze their reactions, leading to the design of more complex molecules.

Engineering for high-speed devices
A research team from the University of Delaware has developed cutting-edge technology for photonics devices that could enable faster communications between phones and computers.

Breakthrough in blood vessel engineering
Growing functional blood vessel networks is no easy task. Previously, other groups have made networks that span millimeters in size.

Next-gen batteries possible with new engineering approach
Dramatically longer-lasting, faster-charging and safer lithium metal batteries may be possible, according to Penn State research, recently published in Nature Energy.

Read More: Engineering News and Engineering Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.