Scientists identify protein critical to melanoma growth

December 20, 2004

BOSTON--Researchers at Dana-Farber Cancer Institute and Children's Hospital Boston have discovered that malignant melanoma, the potentially lethal skin cancer, can't grow without a steady supply of a protein that normal cells can do without.

The findings, which are published in the December issue of Cancer Cell, suggest that drugs that cut off melanoma cells' supply of the protein, called CDK2, might curb the growth of the dangerous skin cancer in patients, and with relatively low toxicity.

In theory, such a drug would leave normal cells unharmed and have many fewer side effects compared to standard chemotherapy.

Working with melanoma cells grown in the laboratory, the researchers, led by David E. Fisher, MD, PhD, Director of the Melanoma Program at Dana-Farber and the paper's senior author, showed that adding a chemical that quashed the activity of CDK2, the gene that manufactures CDK2 protein, dramatically slowed the growth and proliferation of the cancer cells. Unlike conventional chemotherapy drugs, a CDK2 inhibitor drug wouldn't be aimed at killing melanoma cells, only halting their growth.

Fisher said that CDK2-inhibiting drugs exist, and he hopes that the research results will soon lead to clinical trials of them in patients with melanoma.

The study's lead author is Jinyan Du, PhD, who carried out the project while working as a student in Fisher's lab at Dana-Farber. Fisher is also a pediatric oncologist at Dana-Farber/Children's Hospital Cancer Care.

The CDK2 gene and its protein (an enzyme) are one of several regulators of the cell cycle: That is, they help determine when a cell should be "resting" and when it should begin dividing to make more of itself. When cells become malignant, it is in part because their normal controls on growth and division are disabled, and they proliferate abnormally. Overactive CDK2 has been found in many types of cancer, making it a prime candidate for designer drugs that would turn down CDK2 activity and, it was hoped, slow the runaway growth of cancer cells.

Recent research, however, had thrown cold water on the notion. Studies have shown that tumor cells in a variety of cancers weren't dependent on CDK2 for growth. Thus, blocking its activity had little effect on the out-of-control cells.

The scientist's report today is all the more striking, because it reveals that melanoma does require the CDK2 enzyme for growth. Why this is so isn't clear, but the finding revives the strategy of using CDK2 inhibitors as a potential treatment - even if only for this one form of cancer. And, since it's been previously shown that normal cells can divide and grow normally without CDK2 (other types of CDK molecules apparently can take over the job) "this is good news, because it means there may be little toxicity to a person who would receive a CDK2 inhibitor to treat melanoma," says Fisher, who is also an associate professor of pediatrics at Harvard Medical School.

Melanoma will cause about 7,900 deaths this year in the United States, according to the American Cancer Society. Its incidence has been rising rapidly over the past several decades: about 55,000 cases are expected in 2004. Most cases caught early can be cured, but if melanoma cells penetrate the skin deeply, the cancer is highly prone to spread with life-threatening consequences despite treatment with surgery, chemotherapy and radiation.

The new findings stem from Fisher's longtime work on a gene called MITF that regulates the development of skin pigment-producing cells called melanocytes. Regulatory genes like MITF act on other genes in a chain-of-command fashion. When Fisher's group looked for genes regulated by MITF, they found a pigment gene called SILVER, and they noted that, surprisingly, it was located just a stone's throw, genetically, from CDK2 on the chromosome.

"It was dumb luck," says Fisher, and it led him and his colleagues to recognize that both SILVER and CDK2 were under the control of MITF. In all other body cells besides melanocytes, CDK2 is not subservient to MITF: To the researchers this was an important clue. "If the control of CDK2 expression is so different in the development of melanocytes, then maybe the requirement for CDK2 in melanoma is different than in other cancers," he says - and the new findings confirm this idea.

The fact that melanoma cells, unlike other cancer cells, become "overdependent" on the CDK2 protein while normal cells don't need much of it provides a "therapeutic window." That is, a drug that suppresses melanoma growth by shutting down CDK2 in theory could control the cancer yet have little toxic effect on the body.

In addition to Fisher and Du, the paper's other authors include researchers from the Broad Institute at the Massachusetts Institute of Technology and Harvard University, MIT, and Massachusetts General Hospital. The research was funded by the National Institutes of Health.

Dana-Farber Cancer Institute is a principal teaching affiliate of the Harvard Medical School and is among the leading cancer research and care centers in the United States. It is a founding member of the Dana-Farber/Harvard Cancer Center (DF/HCC), designated a comprehensive cancer center by the National Cancer Institute.
-end-
Children's Hospital Boston is home to the world's largest research enterprise based at a pediatric medical center, where its discoveries have benefited both children and adults for over 100 years. More than 500 scientists, including eight members of the National Academy of Sciences, nine members of the Institute of Medicine and 10 members of the Howard Hughes Medical Institute comprise Children's research community. Children's also is the primary pediatric teaching affiliate of Harvard Medical School. For more information about the hospital visit: www.childrenshospital.org.

Dana-Farber Cancer Institute

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.