Rutgers-Newark researchers link early movement, brain development

December 20, 2004

When a baby kicks a mother from within her womb, the mother may joke that the baby could be angry, ready to come out, or is destined to become the world's next great soccer player. But researchers at Rutgers University-Newark have determined that these kicks mean much more than those light-hearted explanations and may hold the key to how an infant's brain develops in its earliest stages.

In a paper published in the journal Nature, Gyorgy Buzsaki, Professor in Neuroscience, Rustem Khazipov, a Visiting Professor from INSERM, Marseille, France, and their team of researchers contend that critical information may be provided to the sensory areas of the developing brain through an individual's own movements rather than just sensory inputs, as was previously believed. In the article, "Early motor activity drives spindle bursts in the developing somatosensory cortex," the researchers describe how they examined the relationship between movement and electrical activity in the somatosensory area of the cerebral cortex in developing rats. The cerebral cortex is largely responsible for higher brain functions which include sensation, voluntary muscle movement, thought, reasoning and memory.

Rat pups in their litter display frequent muscle twitches and non-directed limb and whole body jerks, which are similar to human fetal movements. By studying the relationship between these movements and neuronal activity in the sensory part of the cerebral cortex, the researchers determined that the information provided to the developing brain by these random movements are critical for creating the proper representation of the body in the sensory cortex. By analogy, spontaneous kicks babies perform during the late stages of pregnancy should perform the same service for the human sensor

"Brain activity can occur independently of movement, but it is useless unless it is somehow tied to the events in the surrounding world," Dr. Buzsaki notes. "What we have found is that the very first pattern in the somatosensory part of the cortex is under the supervised control of the skeletal muscle system. The physical layout basically constrains what kind of activity should occur in the somatosensory representation. Without movement, sensory stimuli will still get into the brain and produce some activity but those inputs remain in abstract space and cannot be related to the body or anything in the real world."

Additionally, the research may offer clues as to how the brain determines whether the world around us is three dimensional and how the brain measures metric distances between body parts. Without such information it is impossible for individuals to perform even a simple sensorimotor coordination task, such as scratching one's nose.

"It is our conclusion that the developing brain never learns to sense anything unless it is able to move the sensors in the environment," Dr. Buzsaki explains. "Think about what you would see if neither your eyes nor your body could have moved since you were born. You would not be able to tell what is closer or what is distant, whether an object is the same when it is near or far from you or when it is partially covered by something. It is the movement of the eyes and body that verifies those relationships."
-end-


Rutgers University

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.