USC-led researchers use stem cells to regenerate parts of teeth

December 20, 2006

Los Angeles, CA., Dec.20, 2006-A multi-national research team headed by USC School of Dentistry researcher Songtao Shi, DDS, PhD, has successfully regenerated tooth ro ot and supporting periodontal ligaments to restore tooth function in a swine (an animal) model. The breakthrough holds significant promise for clinical application in human patients.

The study appears December 20 in the inaugural issue of PLoS ONE.

Utilizing stem cells harvested from the extracted wisdom teeth of 18- to 20-year olds, Shi and colleagues have created sufficient root and ligament structure to support a crown restoration in their mini-pig (animal) model. The resulting tooth restoration closely resembled the original tooth in function and strength.

The technique relies on stem cells harvested from the root apical papilla, which is responsible for the development of a tooth's root and periodontal ligament. Previous studies conducted by Shi and collaborator Stan Gronthos at the National Institutes of Health had utilized dental pulp stem cells. Shi found the new technique to be superior.

"The apical papilla provides better stem cells for root structure regeneration. With this technique, the strength of the tooth restoration is not quite as strong as the original tooth, but we believe it is sufficient to withstand normal wear and tear," says Shi.

He hopes to move the technique to clinical trials within the next several years, a potential boon for dental patients who are not appropriate candidates for dental implant therapy or would prefer living tissue derived from their own teeth.

"Implant patients must have sufficient bone in the jaw to support the implant. For those who don't, this therapy would be a great alternative," says Shi.

According to Shi, the not-so-distant future may be one in which not only wisdom teeth, but those baby teeth once left to the tooth fairy for a pittance, will become valuable therapeutic tools.

"We will be able to provide not only this t echnique, but other new therapies utilizing a patient's own stem cells harvested from their preserved teeth. This is a very exciting discovery and one that I hope to see in wide-spread clinical use in the near future," says Shi.
-end-
Disclaimer

The following press release refers to an upcoming article in PLoS ONE. It has been contributed by the article authors and/or their institutions. The opinions expressed do not necessarily reflect the views of the staff or the editors of PLoS ONE.

Citation: Sonoyama W, Liu Y, Fang D, Yamaza T, Seo B-M, et al (2006) Mesenchymal Stem Cell-Mediated Functional Tooth Regeneration in Swine. PLoS ONE 1(1): e79. doi:10.1371/journal.pone.0000079

PLEASE ADD THE LINK TO THE PUBLISHED ARTICLE IN ONLINE VERSIONS OF YOUR REPORT: http://dx.doi.org/10.1371/journal.pone.0000079

PRESS ONLY PREVIEW OF THE ARTICLE: http://www.plos.org/press/pone-01-01-shi.pdf

PLOS

Related Stem Cells Articles from Brightsurf:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.

Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.

New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.

NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.

Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.

Read More: Stem Cells News and Stem Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.