Nav: Home

Predator pressures maintain bees' social life

December 20, 2007

The complex organisation of some insect societies is thought to have developed to such a level that these animals can no longer survive on their own. Research published in the online open access journal BMC Evolutionary Biology suggests that rather than organisational, genetic, or biological complexity defining a 'point of no return' for social living, pressures of predation create advantages to not living alone.

The ancient systems of sociality in bees, wasps, termites, and ants seem to have become an obligatory way of life for these organisms as there are almost no examples of species reverting to solitary lifestyles. "This has prompted the notion of a 'point of no return' whereby evolutionary changes in behaviour, genetics, and shape in adaptation to a social lifestyle prohibit the insects from living without their society -- a queen bee losing her workers would be like a human being losing a vital organ", explains Luke Chenoweth of Flinders University, Australia.

Most social insects have developed a system in which there is a division of labour between castes of related individuals. Reproductive queens rely on sterile workers, usually their daughters, to feed them and nurture their young, but in a few examples of social bees all females in a colony retain the ability to breed but some do not, a phenomenon known as totipotency. Chenoweth and colleagues investigated Halterapis nigrinervis, an African species thought to provide a rare example of a bee with totipotent social ancestors that has reverted to a solitary lifestyle. By investigating this species the researchers hoped to reveal the factors that allow or prevent reversion to a solitary lifestyle.

The researchers collected nests from various habitats. Surprisingly they found that over half contained multiple females and those containing multiple females were more likely to have bee larvae in them. "The results mean that H. nigrinervis is social and that there are consequently no known losses of sociality in this group of bees." As these bees lack the social and behavioural complexity of honeybees and many other social insects, the fact that they do not seem to live solitarily in any circumstances suggests that ecological pressures rather than biological factors maintain sociality.

The researchers hypothesise that sociality in H. nigrinervis is maintained by predation: multiple females not only offer greater protection to the brood in the nest but also should an adult fall foul of predators, nest-mates will raise their young. While many social insects might retain the potential to raise young alone, the benefits of protection against predation result in sociality being maintained.
-end-
Notes to Editors

1 Social complexity in bees is not sufficient to explain lack of reversions to solitary living over long time scales.
Luke B Chenoweth, Simon M Tierney, Jaclyn A Smith, Steven JB Cooper and Michael P Schwarz
BMC Evolutionary Biology (in press)

During embargo, article available at: http://www.biomedcentral.com/imedia/7478252931515178_article.pdf?random=683401

After the embargo, article available at journal website: http://www.biomedcentral.com/bmcevolbiol/

Please name the journal in any story you write. If you are writing for the web, please link to the article. All articles are available free of charge, according to BioMed Central's open access policy.

Article citation and URL available on request at press@biomedcentral.com on the day of publication

Alternative contact:

Robert Brumfield
Fusion PR
Tel: +001 202 898 200 (ext. 109)
Email: robert.brumfield@fusionpr.com

BMC Evolutionary Biology is an open access journal publishing original peer-reviewed research articles in all aspects of molecular and non-molecular evolution of all organisms, as well as phylogenetics and palaeontology. BMC Evolutionary Biology (ISSN 1471-2148) is indexed/tracked/covered by PubMed, MEDLINE, BIOSIS, CAS, Scopus, Zoological Record, Thomson Scientific (ISI) and Google Scholar.

BioMed Central (www.biomedcentral) is an independent online publishing house committed to providing immediate access without charge to the peer-reviewed biological and medical research it publishes. This commitment is based on the view that open access to research is essential to the rapid and efficient communication of science.

BioMed Central

Related Bees Articles:

To buzz or to scrabble? To foraging bees, that's the question
A team of UA biologists has discovered that for a hard-working bumblebee, foraging for pollen versus nectar is very different -- and tougher than you might think.
Nicotine enhances bees' activity
Nicotine-laced nectar can speed up a bumblebee's ability to learn flower colors, according to scientists at Queen Mary University of London (QMUL).
Scientists say agriculture is good for honey bees
Scientists with the University of Tennessee Institute of Agriculture evaluated the impacts of row-crop agriculture, including the traditional use of pesticides, on honey bee health.
Honey bees have sharper eyesight than we thought
Research conducted at the University of Adelaide has discovered that bees have much better vision than was previously known, offering new insights into the lives of honey bees, and new opportunities for translating this knowledge into fields such as robot vision.
Overuse of antibiotics brings risks for bees -- and for us
Researchers from The University of Texas at Austin have found that honeybees treated with a common antibiotic were half as likely to survive the week after treatment compared with a group of untreated bees, a finding that may have health implications for bees and people alike.
Flies and bees act like plant cultivators
Pollinator insects accelerate plant evolution, but a plant changes in different ways depending on the pollinator.
Bees can learn to use a tool by observing others
Simply by watching other bees, bumblebees can learn to use a novel tool to obtain a reward, a new study reveals.
Stingless bees have their nests protected by soldiers
Attacks by robber bees result in the evolution of larger guard bees and thus promote the division of labor in the hive.
Save the bees? There's an app for that
A new mobile app can calculate the crop productivity and pollination benefits of supporting endangered bees.
Sweat bees on hot chillies: Native bees thrive in traditional farming, securing good yield
Farming doesn't always have to be harmful to bees: Even though farmers on the Mexican peninsula of Yucatan traditionally slash-and-burn forest to create small fields, this practice can be beneficial to sweat bees by creating attractive habitats.

Related Bees Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Moving Forward
When the life you've built slips out of your grasp, you're often told it's best to move on. But is that true? Instead of forgetting the past, TED speakers describe how we can move forward with it. Guests include writers Nora McInerny and Suleika Jaouad, and human rights advocate Lindy Lou Isonhood.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...