Nav: Home

A link between greenhouse gases and the evolution of C4 grasses

December 20, 2007

How a changing climate can affect ecosystems is an important and timely question, especially considering the recent global rise in greenhouse gases. Now, in an article published online on December 20th in the journal Current Biology, evolutionary biologists provide strong evidence that changes in global carbon dioxide levels probably had an important influence on the emergence of a specific group of plants, termed C4 grasses, which includes major cereal crops, plants used for biofuels, and species that represent important components of grasslands across the world.

C4 plants are specially equipped to combat an energetically costly process, known as photorespiration, that can occur under conditions of high temperature, drought, high salinity, and--ith relevance to these latest findings--low carbon dioxide levels. Although a combination of any of these factors might have provided the impetus behind the evolution of the various C4 lineages, it had been widely speculated that a drop in global carbon dioxide levels, occurring approximately 30 million years ago during the Oligocene period, may have been the major driving force. Establishing the link between the two, however, has proven difficult partly because there are no known fossils of C4 plants from this period. Enter Pascal-Antoine Christin and colleagues from the University of Lausanne, Switzerland, who decided to take an alternative approach to date a large group of grasses. By using a "molecular clock" technique, the authors were able to determine that the Chloridoideae subfamily of grasses emerged approximately 30 million years ago, right around the time global carbon dioxide levels were dropping. Furthermore, a model of the evolution of these grasses suggests that this correlation is not a trivial coincidence and instead reflects a causal relationship.

As the authors noted in their study, many of the C4 grasses evolved after the drop in global carbon dioxide levels 30 million years ago. How to explain this" The authors speculate that while an atmosphere low in carbon dioxide established the basic conditions necessary for C4 evolution, other ecological factors might be at work. In light of this, the authors hope to apply the same approaches used in the paper described here to investigate the role of other variables, such as drought, salinity, and flooding, in the evolution of C4 plants. In addition to improving our understanding of how climate changes influenced ecosystems in the past, such studies may allow predictions of how human activities could affect the planet in the future. Indeed, with regard to global carbon dioxide levels, Christin and colleagues write, "Besides its influence on climatic variables, increased CO2 concentration could trigger important ecological changes in major terrestrial ecosystems by affecting the distribution of C4-dominated biomes and the affiliated flora and fauna." This implies that a reversal of the conditions that favored C4 plants could potentially lead to their demise--a startling prospect if one considers the human race's reliance on C4 crops like corn, sugarcane, sorghum, and millets.
The researchers include Pascal-Antoine Christin, Department of Ecology and Evolution, Biophore, University of Lausanne, Switzerland; Guillaume Besnard, Department of Ecology and Evolution, Biophore, University of Lausanne, Switzerland; Emanuela Samaritani, Department of Ecology and Evolution, Biophore, University of Lausanne, Switzerland; Melvin R. Duvall, Department of Biological Sciences, Northern Illinois University, DeKalb, Ill., USA; Trevor R. Hodkinson, Department of Botany, School of Natural Sciences, University of Dublin, Trinity College, Dublin, Ireland; Vincent Savolainen, Imperial College, Berkshire, UK; and Nicolas Salamin, Department of Ecology and Evolution, Biophore, University of Lausanne, Switzerland.

Cell Press

Related Evolution Articles:

Chemical evolution -- One-pot wonder
Before life, there was RNA: Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich show how the four different letters of this genetic alphabet could be created from simple precursor molecules on early Earth -- under the same environmental conditions.
Catching evolution in the act
Researchers have produced some of the first evidence that shows that artificial selection and natural selection act on the same genes, a hypothesis predicted by Charles Darwin in 1859.
Guppies teach us why evolution happens
New study on guppies shows that animals evolve in response the the environment they create in the absence of predators, rather than in response to the risk of being eaten.
Undercover evolution
Our individuality is encrypted in our DNA, but it is deeper than expected.
Evolution designed by parasites
In 'Invisible Designers: Brain Evolution Through the Lens of Parasite Manipulation,' published in the September 2019 issue of The Quarterly Review of Biology, Marco Del Giudice explores an overlooked aspect of the relationship between parasites and their hosts by systematically discussing the ways in which parasitic behavior manipulation may encourage the evolution of mechanisms in the host's nervous and endocrine systems.
More Evolution News and Evolution Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...