Nav: Home

Sulfur dioxide may have helped maintain a warm early Mars

December 20, 2007

CAMBRIDGE, Mass. -- Sulfur dioxide (SO2) may have played a key role in the climate and geochemistry of early Mars, geoscientists at Harvard University and the Massachusetts Institute of Technology suggest in the Dec. 21 issue of the journal Science. Their hypothesis may resolve longstanding questions about evidence that the climate of the Red Planet was once much warmer than it is today.

The Science paper's authors are Itay Halevy, a Ph.D. candidate in Harvard's Department of Earth and Planetary Sciences; Daniel Schrag, professor of earth and planetary sciences and environmental engineering at Harvard; and Maria Zuber, professor of earth, atmospheric, and planetary sciences at MIT.

"There is abundant evidence for a warmer climate, perhaps even a liquid water ocean, early in Martian history, between 3.5 and 4 billion years ago," says Schrag, the paper's senior author. "However, scientists have found it difficult to reconcile this evidence with our understanding of how the climate system is regulated on Earth."

Over millions of years, the Earth's climate has been controlled by the carbon cycle and its effect on carbon dioxide, the main greenhouse gas. On Earth, there is a balance between carbon dioxide vented from volcanoes and chemical reactions with silicate rocks on the Earth's surface that remove carbon dioxide from the atmosphere and convert it to calcium carbonate, commonly known as limestone. Scientists believe that this balance has helped maintain Earth's habitability over the last 4 billion years.

On Mars, there is not enough volcanic activity today to maintain this cycle. But this was not true some 4 billion years ago, when a giant volcanic complex called Tharsis erupted over tens to hundreds of millions of years -- and also a time when evidence suggests Mars had a much warmer climate. However, this carbon cycle on early Mars should have produced vast quantities of limestone like on Earth, and yet almost none has been found.

The new hypothesis points the finger at sulfur dioxide, another gas released by volcanoes. Sulfur dioxide is a powerful greenhouse gas, like carbon dioxide, and it is more reactive with silicate rocks than carbon dioxide. On Earth, sulfur dioxide is rapidly oxidized to sulfate, and then removed from the atmosphere. The authors argue that the atmosphere of early Mars would have lacked oxygen, so sulfur dioxide would remain much, much longer.

"The sulfur dioxide would essentially preempt the role of carbon dioxide in surface weathering reactions," says Halevy, the first author of the report. "The presence of even a small amount of sulfur dioxide in the atmosphere would contribute to the warmer climate, and also prevent limestone deposits from forming."

In place of limestone, the authors predict that sulfur minerals would form in any standing water on Mars. This may explain the surprising finding of the rovers that have identified sulfur minerals as an abundant component of Martian soils.

"We think we now understand why there is so little carbonate on Mars, and so much sulfur," Halevy says.

"Our hypothesis may also be important for understanding the early Earth," Schrag says. "Before the origin of life, our atmosphere may have looked much like early Mars. Sulfur dioxide may have had an important role then as well."

If correct, the hypothesis implies that the oceans in which life evolved were much more acidic than previously thought. The early Earth may also provide a test for the hypothesis through the analysis of isotopes of sulfur in ancient mineral deposits.
-end-
Halevy, Schrag, and Zuber's work was funded by the NASA Planetary Geology and Geophysics program, the George Merck Fund of the New York Community Trust, and by a Radcliffe Fellowship to Zuber and a Harvard Origins of Life Initiative Graduate Fellowship to Halevy.

Harvard University

Related Mars Articles:

How hard did it rain on Mars?
Heavy rain on Mars reshaped the planet's impact craters and carved out river-like channels in its surface billions of years ago, according to a new study published in Icarus.
Does Mars have rings? Not right now, but maybe one day
Purdue researchers developed a model that suggests that debris that was pushed into space from an asteroid or other body slamming into Mars around 4.3 billion years ago and alternates between becoming a planetary ring and clumping up to form a moon.
Digging deeper into Mars
Scientists continue to unravel the mystery of life on Mars by investigating evidence of water in the planet's soil.
A bewildering form of dune on Mars
Researchers have discovered a type of dune on Mars intermediate in size between tiny ripples and wavier dunes, and unlike anything seen on Earth.
Mars is emerging from an ice age
Radar measurements of Mars' polar ice caps reveal that the mostly dry, dusty planet is emerging from an ice age, following multiple rounds of climate change.
Shifting sands on Mars
University of Iowa researchers have a $501,000 NASA grant to travel to Iceland to better understand sand dunes found all over the planet Mars.
Potatoes on Mars
A team of world-class CIP and NASA scientists will grow potatoes under Martian conditions in a bid to save millions of lives.
You too can learn to farm on Mars!
Scientists at Washington State University and the University of Idaho are helping students figure out how to farm on Mars, much like astronaut Mark Watney, played by Matt Damon, attempts in the critically acclaimed movie 'The Martian.'
Similarities between aurorae on Mars and Earth
An international team of researchers has for the first time predicted the occurrence of aurorae visible to the naked eye on a planet other than Earth.
Mars might have liquid water
Researchers have long known that there is water in the form of ice on Mars.

Related Mars Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...