Nav: Home

Scientists find good news about methane bubbling up from the ocean floor

December 20, 2007

(Santa Barbara, Calif.) -- Methane, a potent greenhouse gas, is emitted in great quantities as bubbles from seeps on the ocean floor near Santa Barbara. About half of these bubbles dissolve into the ocean, but the fate of this dissolved methane remains uncertain. Researchers at the University of California, Santa Barbara have discovered that only one percent of this dissolved methane escapes into the air -- good news for the Earth's atmosphere.

Coal Oil Point (COP), one of the world's largest and best studied seep regions, is located along the northern margin of the Santa Barbara Channel. Thousands of seep fields exist in the ocean bottom around the world, according to David Valentine, associate professor of Earth Science at UC Santa Barbara. Valentine along with other members of UCSB's seeps group studied the plume of methane bubbles that flows from the seeps at COP.

Their results will soon be published as the cover story in Volume 34 of Geophysical Research Letters. This research effort is the first time that the gas that dissolves and moves away from COP, the plume, has been studied.

The amount of methane release from COP seeps is around two million cubic feet per day, according to Valentine. About 100 barrels of oil oozes out of this area as well. Methane warms the Earth 23 times more than carbon dioxide when averaged over a century. Thus the fate of the methane bubbles from the seeps is an important environmental question.

"We found that the ocean has an amazing capacity to take up methane that is released into it -- even when it is released into shallow water," said Valentine. "Huge amounts of gas are coming up here, creating a giant gas plume. Until now, no one had measured the gas that dissolves and moves away, the plume."

Valentine hypothesized that the methane is oxidized by microbial activity in the ocean, thus relieving the ocean of the methane "burden."

To arrive at this hypothesis, Valentine and lead author Susan Mau, a postdoctoral fellow in Valentine's lab, tracked the plume down current from the seeps at 79 surface stations in a 280 square kilometer study area. They found that the methane plume spread over 70 square kilometers.

By boat, the authors sampled the water on a monthly basis. They found variable methane concentrations that corresponded with changes in surface currents. They also found that more wind releases more methane into the atmosphere. Overall, they discovered that about one percent of the dissolved methane escapes into the atmosphere in the area they studied, a long-term average. This lead the authors to hypothesize that most of the methane is transported below the ocean's surface -- away from the seep area. Then it is oxidized by microbial activity.

To back up their findings of their surface sampling of the water, the scientists used a mass spectrometer hauled behind the boat as well. This equipment allowed for very high-resolution chemical information about the methane. This effort showed no significant difference in the numbers.

"We showed that the currents control the fate of the gas and supply it to bacteria in a way that allows them to destroy the methane," said Valentine.

Valentine said that while the seeps at COP are among the largest in the world, they can be found just about anywhere.
-end-


University of California - Santa Barbara

Related Methane Articles:

Microbial fuel cell converts methane to electricity
Transporting methane from gas wellheads to market provides multiple opportunities for this greenhouse gas to leak into the atmosphere.
Methane seeps in the Canadian high Arctic
Cretaceous climate warming led to a significant methane release from the seafloor, indicating potential for similar destabilization of gas hydrates under modern global warming.
Methane emissions from trees
A new study from the University of Delaware is one of the first in the world to show that tree trunks in upland forests actually emit methane rather than store it, representing a new, previously unaccounted source of this powerful greenhouse gas.
Oil production releases more methane than previously thought
Emissions of methane and ethane from oil production have been substantially higher than previously estimated, particularly before 2005.
Bursts of methane may have warmed early Mars
The presence of water on ancient Mars is a paradox.
New method for quantifying methane emissions from manure management
The EU Commision requires Denmark to reduce drastically emissions of greenhouse gases from agriculture.
New 3-D printed polymer can convert methane to methanol
Lawrence Livermore National Laboratory scientists have combined biology and 3-D printing to create the first reactor that can continuously produce methanol from methane at room temperature and pressure.
Arctic Ocean methane does not reach the atmosphere
250 methane flares release the climate gas methane from the seabed and into the Arctic Ocean.
Long-sought methane production mechanism identified
Researchers have identified the mechanism by which bacteria create methane, a potent greenhouse gas.
Retreat of the ice followed by millennia of methane release
Methane was seeping from the seafloor for thousands of years following the retreat of the Barents Sea ice sheet, shows a groundbreaking new study in Nature Communications.

Related Methane Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...