Nav: Home

Surgery without stitches

December 20, 2007

A thin polymer bio-film that seals surgical wounds could make sutures a relic of medical history.

Measuring just 50 microns thick, the film is placed on a surgical wound and exposed to an infrared laser, which heats the film just enough to meld it and the tissue, thus perfectly sealing the wound.

Known as Surgilux, the device's raw material is extracted from crab shells and has Food and Drug Administration approval in the US.

Early test results indicate that it has strongest potential for use in brain and nerve surgery because it can avoid the numerous disadvantages of invasive stictches/sutures, which fail to seal and can act as a source of infection.

Up to 11% of brain surgery patients have to return for repeat surgery due to leakage of cerebro-spinal fluid (CSF) and other complications arising from sutures.

Surgical sutures date back some 4,000 years, so a new approach is long overdue, according to one of the device's inventors and leader of the Bio/polymer Research Group, UNSW scientist John Foster.

"Others have tried surgical glues but these are mainly gel-like so bonding to the tissue is uneven often resulting in leakages and they're not easy to use. The strongest surgical glue is so toxic that it's limited to external applications," says Dr Foster. "Other devices use ultra-violet light to effect rather poor sealing, but UV rays are damaging to living cells

"The beauty of this is that infra-red laser doesn't cause any tissue damage. Better still, Surgilux has anti-microbial properties, which deters post-operative infections."

Foster and his team are working with micro-surgeon Marcus Stoodley who specialises in nerve repair. Based at the Prince of Wales Hospital Stoodley is excited about early test results.

"Surgilux is well suited to repairing damaged nerves because the gold standard -- sutures - inevitably cause damage to nerves and there is always some permanent loss of function.

"Our test results with rats have shown some degree of permanent nerve recovery within six weeks of operating."

The researchers - who are looking for commercial backing to initiate clinical trials - are planning a second generation version of Surgilux that incorporates growth factors and perhaps stem cells to regenerate nerves.
-end-


University of New South Wales

Related Brain Articles:

Study describes changes to structural brain networks after radiotherapy for brain tumors
Researchers compared the thickness of brain cortex in patients with brain tumors before and after radiation therapy was applied and found significant dose-dependent changes in the structural properties of cortical neural networks, at both the local and global level.
Blue Brain team discovers a multi-dimensional universe in brain networks
Using a sophisticated type of mathematics in a way that it has never been used before in neuroscience, a team from the Blue Brain Project has uncovered a universe of multi-dimensional geometrical structures and spaces within the networks of the brain.
New brain mapping tool produces higher resolution data during brain surgery
Researchers have developed a new device to map the brain during surgery and distinguish between healthy and diseased tissues.
Newborn baby brain scans will help scientists track brain development
Scientists have today published ground-breaking scans of newborn babies' brains which researchers from all over the world can download and use to study how the human brain develops.
New test may quickly identify mild traumatic brain injury with underlying brain damage
A new test using peripheral vision reaction time could lead to earlier diagnosis and more effective treatment of mild traumatic brain injury, often referred to as a concussion.
This is your brain on God: Spiritual experiences activate brain reward circuits
Religious and spiritual experiences activate the brain reward circuits in much the same way as love, sex, gambling, drugs and music, report researchers at the University of Utah School of Medicine.
Brain scientists at TU Dresden examine brain networks during short-term task learning
'Practice makes perfect' is a common saying. We all have experienced that the initially effortful implementation of novel tasks is becoming rapidly easier and more fluent after only a few repetitions.
Balancing time & space in the brain: New model holds promise for predicting brain dynamics
A team of scientists has extended the balanced network model to provide deep and testable predictions linking brain circuits to brain activity.
New view of brain development: Striking differences between adult and newborn mouse brain
Spikes in neuronal activity in young mice do not spur corresponding boosts in blood flow -- a discovery that stands in stark contrast to the adult mouse brain.
Map of teenage brain provides evidence of link between antisocial behavior and brain development
The brains of teenagers with serious antisocial behavior problems differ significantly in structure to those of their peers, providing the clearest evidence to date that their behavior stems from changes in brain development in early life, according to new research led by the University of Cambridge and the University of Southampton, in collaboration with the University of Rome Tor Vergata in Italy.

Related Brain Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...