Malaria-infected cells stiffen, block blood flow

December 20, 2010

PROVIDENCE, R.I. [Brown University] -- Although the incidence of malaria has declined in all but a few countries worldwide, according to a World Health Organization report earlier this month, malaria remains a global threat. Nearly 800,000 people succumbed to the mosquito-borne disease in 2009, nearly all of them in the developing world.

Physicians do not have reliable treatment for the virus at various stages, largely because no one has been able to document the malaria parasite's journeys in the body.

Now researchers at Brown University and the Massachusetts Institute of Technology have used advanced computer modeling and laboratory experiments to show how malaria parasites change red blood cells and how the infected cells impede blood flow to the brain and other critical organs.

Their findings, published in the early online edition of the Proceedings of the National Academy of Sciences, could help doctors chart, in real time, the buildup in the body of cells infected with malaria or other diseases (such as sickle-cell anemia) and to prescribe treatment accordingly.

"The idea is to predict the evolution of these diseases, just like we predict the weather," said George Karniadakis, professor of applied mathematics at Brown and corresponding author on the paper.

The researchers worked with Plasmodium falciparum, a parasite that can cause cerebral malaria by lodging in capillaries of the brain, especially among children. The parasite is found globally but is most common in Africa.

Once introduced into the human body by an infected mosquito's bite, the parasite invades red blood cells. Healthy red blood cells are tremendously elastic; even though they can reach 8 microns in length and 2 microns in thickness, they can easily slide through a capillary just 3 microns in diameter. Capillaries are vital conduits in the human brain and other organs; red blood cells are key transporters of oxygen and nutrients.

Through extensive modeling carried out on one of the world's fastest supercomputers at the National Institute for Computational Sciences, Karniadakis and colleagues found that malaria-infected red blood cells stiffened as much as 50 times more than healthy red blood cells. The result: Infected red blood cells, having lost their elasticity, could no longer pass through capillaries, effectively blocking them.

"Basically what happens is the brain could be deprived of nutrients and oxygen," said Karniadakis, a member of the Center for Fluid Dynamics, Turbulence and Computation at Brown. "This happens because of the deformation of these red blood cells.

"This shows that as stiffening increases (in red blood cells), the viscosity of the blood increases, and the heart has to pump twice as much sometimes to get the same blood flow," Karniadakis added.

The researchers also found that infected red blood cells had a tendency to stick, flip, and flop along the walls of blood vessels -- unlike healthy blood cells that flow in the middle of the channel. For reasons not entirely known, the infected red blood cells develop little knobby protrusions on their cellular skin that tend to stick to the surface of the blood wall, known as the endothelium. Scientists call the sticking cytoadhesion.

"So, what happens is the infected red blood cell is not only stiffer, it's slowed down by this interaction (cytoadhesion)," Karniadakis said. "This drastically changes the flow of blood in the brain, especially in the arterials and in the capillaries."
-end-
Dimitry Fedosov, first author on the paper, worked on the research as a graduate student at Brown. He is now a postdoctoral researcher at the Institute of Solid State Research in Germany. Bruce Caswell, professor emeritus in the School of Engineering at Brown, contributed to the research. Subra Suresh, former dean of the engineering school at MIT and now director of the National Science Foundation, also contributed to the research.

The National Institutes of Health and the NSF funded the research.

Brown University

Related Malaria Articles from Brightsurf:

Clocking in with malaria parasites
Discovery of a malaria parasite's internal clock could lead to new treatment strategies.

Breakthrough in malaria research
An international scientific consortium led by the cell biologists Volker Heussler from the University of Bern and Oliver Billker from the UmeƄ University in Sweden has for the first time systematically investigated the genome of the malaria parasite Plasmodium throughout its life cycle in a large-scale experiment.

Scientists close in on malaria vaccine
Scientists have taken another big step forward towards developing a vaccine that's effective against the most severe forms of malaria.

New tool in fight against malaria
Modifying a class of molecules originally developed to treat the skin disease psoriasis could lead to a new malaria drug that is effective against malaria parasites resistant to currently available drugs.

Malaria expert warns of need for malaria drug to treat severe cases in US
The US each year sees more than 1,500 cases of malaria, and currently there is limited access to an intravenously administered (IV) drug needed for the more serious cases.

Monkey malaria breakthrough offers cure for relapsing malaria
A breakthrough in monkey malaria research by two University of Otago scientists could help scientists diagnose and treat a relapsing form of human malaria.

Getting to zero malaria cases in zanzibar
New research led by the Johns Hopkins Center for Communication Programs, Ifakara Health Institute and the Zanzibar Malaria Elimination Program suggests that a better understanding of human behavior at night -- when malaria mosquitoes are biting -- could be key to preventing lingering cases.

Widely used malaria treatment to prevent malaria in pregnant women
A global team of researchers, led by a research team at the Liverpool School of Tropical Medicine (LSTM), are calling for a review of drug-based strategies used to prevent malaria infections in pregnant women, in areas where there is widespread resistance to existing antimalarial medicines.

Protection against Malaria: A matter of balance
A balanced production of pro and anti-inflammatory cytokines at two years of age protects against clinical malaria in early childhood, according to a study led by ISGlobal, an institution supported by ''la Caixa'' Foundation.

The math of malaria
A new mathematical model for malaria shows how competition between parasite strains within a human host reduces the odds of drug resistance developing in a high-transmission setting.

Read More: Malaria News and Malaria Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.