Nanometer-scale growth of cone cells tracked in living human eye

December 20, 2011

WASHINGTON, Dec. 20 -- Humans see color thanks to cone cells, specialized light-sensing neurons located in the retina along the inner surface of the eyeball. The actual light-sensing section of these cells is called the outer segment, which is made up of a series of stacked discs, each about 30 nanometers (billionths of a meter) thick. This appendage goes through daily changes in length. Scientists believe that a better understanding of how and why the outer segment grows and shrinks will help medical researchers identify potential retinal problems. But the methods usually used to image the living human eye are not sensitive enough to measure these miniscule changes. Now, vision scientists at Indiana University in Bloomington have come up with a novel way to make the measurements in a living human retina by using information hidden within a commonly used technique called optical coherence tomography (OCT). They discuss their results in the Optical Society's (OSA (http://www.osa.org)) open-access journal Biomedical Optics Express(http://www.opticsinfobase.org/boe).

To make an OCT scan of the retina, a beam of light is split into two. One beam scatters off the retina while the other is preserved as a reference. The light waves begin in synch, or in phase, with each other; when the beams are reunited, they are out of phase, due to the scattering beam's interactions with retinal cells. Scientists can use this phase information to procure a precise measurement of a sample's position. But since in this case their samples were attached to live subjects, the researchers had to adapt these typical phase techniques to counteract any movements that the subjects' eyes might insert into the data.

Instead of measuring the phase of a single interference pattern, the researchers measured phase differences between patterns originating from two reference points within the retinal cells: the top and bottom of the outer segment. The team used this hidden phase information to measure microscopic changes in hundreds of cones, over a matter of hours, in two test subjects with normal vision. Researchers found they could resolve the changes in length down to about 45 nanometers, which is just slightly longer than the thickness of a single one of the stacked discs that make up the outer segment. The work shows that the outer segments of the cone cells grow at a rate of about 150 nanometers per hour, which is about 30 times faster than the growth rate of a human hair.
-end-
Paper: "Phase-sensitive imaging of the outer retina using optical coherence tomography and adaptive optics (http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-3-1-104)," Biomedical Optics Review, Vol. 3, Issue 1, pp. 104-124 (2012).

EDITOR'S NOTE: This summary is part of OSA's monthly Biomedical Optics Express tip sheet. To subscribe, email astark@osa.org or follow @OpticalSociety on Twitter. For images or interviews with authors, please contact Angela Stark, astark@osa.org or 202-416-1443.

About Biomedical Optics Express

Biomedical Optics Express is OSA's principal outlet for serving the biomedical optics community with rapid, open-access, peer-reviewed papers related to optics, photonics and imaging in the life sciences. The journal scope encompasses theoretical modeling and simulations, technology development, and biomedical studies and clinical applications. It is published by the Optical Society and edited by Joseph A. Izatt of Duke University. Biomedical Optics Express is an open-access journal and is available at no cost to readers online at http://www.OpticsInfoBase.org/BOE.

About OSA

Uniting more than 130,000 professionals from 175 countries, the Optical Society (OSA) brings together the global optics community through its programs and initiatives. Since 1916 OSA has worked to advance the common interests of the field, providing educational resources to the scientists, engineers and business leaders who work in the field by promoting the science of light and the advanced technologies made possible by optics and photonics. OSA publications, events, technical groups and programs foster optics knowledge and scientific collaboration among all those with an interest in optics and photonics. For more information, visit http://www.osa.org.

The Optical Society

Related Retina Articles from Brightsurf:

USTC deciphers transcriptomic atlas of aging human and macaque retina
The work which provides valuable basic for the molecular regulation of aging progression and related diseases, was published in National Science Review on Aug.

Gene therapy targets inner retina to combat blindness
Batten disease is a group of fatal, inherited lysosomal storage disorders that predominantly affect children.

Nanotechnology applied to medicine: The first liquid retina prosthesis
Researchers at Istituto Italiano di Tecnologia has led to the development of an artificial liquid retinal prosthesis to counteract the effects of diseases such as retinitis pigmentosa and age-related macular degeneration that cause the progressive degeneration of photoreceptors of the retina, resulting in blindness.

HKUST scientists develop world's first spherical artificial eye with 3D retina
An international team led by HKUST scientists has developed the world's first 3D artificial eye with capabilities better than existing bionic eyes and in some cases, even exceed those of the human eyes, bringing vision to humanoid robots and new hope to patients with visual impairment.

Retina-inspired carbon nitride-based photonic synapses for selective detection of UV light
Researchers at Seoul National University and Inha University in South Korea developed photo-sensitive artificial nerves that emulated functions of a retina by using 2-dimensional carbon nitride (C3N4) nanodot materials.

Delivering large genes to the retina is problematic
A new study has shown that a commonly used vector for large gene transfer can success-fully deliver genes to retinal cells in the laboratory, but when injected subretinally into rats it provokes a robust and acute inflammatory response.

Researchers have identified areas of the retina that change in mild Alzheimer's disease
Finding biomarkers that enable early detection of Alzheimer's disease is one of medicine's biggest challenges, and the retina is one of the most promising candidates.

The birth of vision, from the retina to the brain
How do neurons differentiate to become individual components of the visual system?

Retina-on-a-chip provides powerful tool for studying eye disease
The development of a retina-on-a-chip, which combines living human cells with an artificial tissue-like system, has been described today in the open-access journal eLife.

Australian researchers reveal new insights into retina's genetic code
Australian scientists have led the development of the world's most detailed gene map of the human retina, providing new insights which will help future research to prevent and treat blindness.

Read More: Retina News and Retina Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.