New MRI analysis useful in predicting stroke complications caused by clot-busters

December 20, 2012

Johns Hopkins researchers have developed a new way of looking at standard MRI scans that more accurately measures damage to the blood-brain barrier in stroke victims, a process they hope will lead to safer, more individualized treatment of blood clots in the brain and better outcomes.

The blood-brain barrier is a unique shielding of blood vessels that limits the passage of molecules from the blood stream into the brain. Without it, the brain is open to infection, inflammation and hemorrhage. Ischemic stroke patients are at risk of bleeding into the brain when there is damage to the barrier. By more accurately identifying areas of damage, the researchers, in a report published in the journal PLOS ONE, say they hope to use their new tool to predict and reduce the risk of complications from clot-dissolving drugs used to treat this kind of stroke.

"A better characterization of blood-brain barrier damage opens the door to new approaches to treating stroke patients," says study leader Richard Leigh, M.D., an assistant professor of neurology and radiology at the Johns Hopkins University School of Medicine. "We want to help patients, but we need to make sure our treatments don't make things worse."

In an ischemic stroke, a blood clot is stuck in a vessel, cutting off blood flow to a portion of the brain, which will begin to die the longer the clot remains. When patients come to the hospital within three-to-four hours of suffering an ischemic stroke, doctors quickly move to give them the intravenous clot-busting drug tPA, hoping that it will dissolve the clot without causing additional damage.

In some people -- roughly 6 percent of stroke patients treated in this manner -- there already is too much damage done to the blood-brain barrier, and use of the drug causes bleeding in the brain, severe injury and sometimes death. But doctors don't currently know which patients will have this bad outcome. In these situations, if physicians knew the extent of the damage to the blood-brain barrier, they would be able to choose a potentially safer treatment option, Leigh says.

Most stroke patients, Leigh notes, don't get to a hospital within the window for optimal tPA use, and physicians believe it is dangerous to give intravenous tPA to these patients for fear of hemorrhage. Sometimes more aggressive treatment is needed, such as pulling the clot out mechanically via a catheter threaded from the groin area or by directly injecting tPA into the brain.

Before any procedure, these patients traditionally receive an MRI to estimate the risks and benefits of such an aggressive approach. But there has been no reliable way to detect the subtle amount of blood-brain barrier damage that would offer clues about how well the patient would fare under various treatments.

That led Leigh to his efforts to develop new software that uses MRI images already being taken and overlays them with calculations that more precisely measure blood-brain barrier damage.

Animal studies have already shown that blood-brain barrier damage is a predictive marker for risk of hemorrhage.

The use of the new MRI software could mean that for some patients, tPA could be safely used even if they arrive at the hospital later than safe-use guidelines indicate.

"It's a personalization of medicine," Leigh says. "Rather than lumping everyone together, we can figure out -- on a case-by-case basis -- who should and who shouldn't get which treatment. In the long run, we can increase the number of patients we can help and decrease the number who have complications."

Leigh and his colleagues say there is more research needed before his software enhancement can be widely used, but "proof of concept" has been established in a review of MRI scans from nine stroke patients with known blood-brain barrier damage. Each patient was found to have a different amount of damage. Leigh and his team are now looking at a larger group to better define the meaning of these variations and how physicians can use this information to choose the best treatment.
-end-
Other Johns Hopkins researchers involved in the study include Shyian S. Jen, M.D.; Argye E. Hillis, M.D.; and Peter B. Barker, D.Phil.

For more information:

http://www.hopkinsmedicine.org/neurology_neurosurgery/experts/profiles/team_member_profile/BD025DCD3437BDB5FA2D39EDE6C48886/Richard_Leigh

http://www.hopkinsmedicine.org/neurology_neurosurgery/specialty_areas/cerebrovascular/conditions/stroke.html

Johns Hopkins Medicine

Related Stroke Articles from Brightsurf:

Stroke alarm clock may streamline and accelerate time-sensitive acute stroke care
An interactive, digital alarm clock may speed emergency stroke care, starting at hospital arrival and through each step of the time-sensitive treatment process.

Stroke patients with COVID-19 have increased inflammation, stroke severity and death
Stroke patients who also have COVID-19 showed increased systemic inflammation, a more serious stroke severity and a much higher rate of death, compared to stroke patients who did not have COVID-19, according a retrospective, observational, cross-sectional study of 60 ischemic stroke patients admitted to UAB Hospital between late March and early May 2020.

'Time is vision' after a stroke
University of Rochester researchers studied stroke patients who experienced vision loss and found that the patients retained some visual abilities immediately after the stroke but these abilities diminished gradually and eventually disappeared permanently after approximately six months.

More stroke awareness, better eating habits may help reduce stroke risk for young adult African-Americans
Young African-Americans are experiencing higher rates of stroke because of health conditions such as high blood pressure, diabetes and obesity, yet their perception of their stroke risk is low.

How to help patients recover after a stroke
The existing approach to brain stimulation for rehabilitation after a stroke does not take into account the diversity of lesions and the individual characteristics of patients' brains.

Kids with headache after stroke might be at risk for another stroke
A new study has found a high incidence of headaches in pediatric stroke survivors and identified a possible association between post-stroke headache and stroke recurrence.

High stroke impact in low- and middle-income countries examined at 11th World Stroke Congress
Less wealthy countries struggle to meet greater need with far fewer resources.

Marijuana use might lead to higher risk of stroke, World Stroke Congress to be told
A five-year study of hospital statistics from the United States shows that the incidence of stroke has risen steadily among marijuana users even though the overall rate of stroke remained constant over the same period.

We need to talk about sexuality after stroke
Stroke survivors and their partners are not adequately supported to deal with changes to their relationships, self-identity, gender roles and intimacy following stroke, according to new research from the University of Sydney.

Standardized stroke protocol can ensure ELVO stroke patients are treated within 60 minutes
A new study shows that developing a standardized stroke protocol of having neurointerventional teams meet suspected emergent large vessel occlusion (ELVO) stroke patients upon their arrival at the hospital achieves a median door-to-recanalization time of less than 60 minutes.

Read More: Stroke News and Stroke Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.