Genetic differences may influence sensitivity to pain, according to new study

December 20, 2012

The study, published in PLOS Genetics on 20 December, adds to growing evidence that particular genes are involved in chronic pain and highlights this pathway as a potential target for more effective pain relief treatments for patients.

The collaborative study between King's, Pfizer Ltd and the Beijing Genomics Institute (BGI), used a new method to study and compare DNA, called 'exome sequencing', to identify genetic variations relating to pain sensitivity.

Lead author Dr Frances Williams, from the Department of Twin Research and Genetic Epidemiology at King's College London said: 'Chronic pain is a significant personal and socio-economic burden, with nearly one in five people experiencing it at some time in their lives. Current pain treatments often have either limited efficacy or side effects for many, so the possibility of a new approach to pain relief is an exciting development.

It is known that people who are most sensitive to pain encountered in everyday life are more likely to go on to develop chronic pain. To identify sensitivity levels, researchers tested 2,500 volunteers using a heating probe on the arm. Volunteers were asked to press a button when the heat became painful for them, which allowed the scientists to determine individuals' pain thresholds. Exome sequencing was then used to analyse the DNA of 200 of the most pain sensitive and 200 of the least pain sensitive people.

Xin Jin, project manager from BGI, said: 'More and more evidence supports our theory that rare variants, which were overlooked in genome-wide association study, play a very important role in complex diseases and traits. The next generation of sequencing will make it possible to explore these rare variants and will lead to a wave of new discoveries in biomedical research.'

The results showed different patterns of genetic variants in each group - the pain sensitive people had less variation in their DNA than those who were pain insensitive. Serena Scollen, Geneticist from Pfizer and co-author on the work said: 'Further studies are needed to understand fully the genetics that underlie pain sensitivity in humans, but early studies in this area are promising.'

Ruth McKernan, Chief Scientific Officer of Pfizer's Research Unit in Cambridge that works on new pain drugs said: 'This study demonstrates the value of collaborative efforts between academia and industry. The genetic influence on normal pain processing in human volunteer populations will add to other approaches and help us prioritise potential new mechanisms for treating pain.'
-end-
CONTACT

For further information please or to request the full paper, contact Marianne Slegers, International Press Officer at King's College London.

Notes to editors:

King's College London

King's College London is one of the top 30 universities in the world (2011/12 QS World University Rankings), and the fourth oldest in England. A research-led university based in the heart of London, King's has nearly 23,500 students (of whom more than 9,000 are graduate students) from nearly 140 countries, and some 6,000 employees. King's is in the second phase of a £1 billion redevelopment programme which is transforming its estate.

King's has an outstanding reputation for providing world-class teaching and cutting-edge research. In the 2008 Research Assessment Exercise for British universities, 23 departments were ranked in the top quartile of British universities; over half of our academic staff work in departments that are in the top 10 per cent in the UK in their field and can thus be classed as world leading. The College is in the top seven UK universities for research earnings and has an overall annual income of nearly £450 million.

King's College London

Related DNA Articles from Brightsurf:

A new twist on DNA origami
A team* of scientists from ASU and Shanghai Jiao Tong University (SJTU) led by Hao Yan, ASU's Milton Glick Professor in the School of Molecular Sciences, and director of the ASU Biodesign Institute's Center for Molecular Design and Biomimetics, has just announced the creation of a new type of meta-DNA structures that will open up the fields of optoelectronics (including information storage and encryption) as well as synthetic biology.

Solving a DNA mystery
''A watched pot never boils,'' as the saying goes, but that was not the case for UC Santa Barbara researchers watching a ''pot'' of liquids formed from DNA.

Junk DNA might be really, really useful for biocomputing
When you don't understand how things work, it's not unusual to think of them as just plain old junk.

Designing DNA from scratch: Engineering the functions of micrometer-sized DNA droplets
Scientists at Tokyo Institute of Technology (Tokyo Tech) have constructed ''DNA droplets'' comprising designed DNA nanostructures.

Does DNA in the water tell us how many fish are there?
Researchers have developed a new non-invasive method to count individual fish by measuring the concentration of environmental DNA in the water, which could be applied for quantitative monitoring of aquatic ecosystems.

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.

Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.

DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.

A new spin on DNA
For decades, researchers have chased ways to study biological machines.

From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.

Read More: DNA News and DNA Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.