Research pinpoints key gene for regenerating cells after heart attack

December 20, 2012

DALLAS - Dec. 20, 2012 - UT Southwestern Medical Center researchers have pinpointed a molecular mechanism needed to unleash the heart's ability to regenerate, a critical step toward developing eventual therapies for damage suffered following a heart attack.

Cardiologists and molecular biologists at UT Southwestern, teaming up to study in mice how heart tissue regenerates, found that microRNAs - tiny strands that regulate gene expression - contribute to the heart's ability to regenerate up to one week after birth. Soon thereafter the heart loses the ability to regenerate. By determining the fundamental mechanisms that control the heart's natural regenerative on-off switch, researchers have begun to better understand the No. 1 hurdle in cardiovascular research - the inability of the heart to regenerate following injury.

"For the first time since we began studying how cells respond to a heart attack, we now believe it is possible to activate a program of endogenous regeneration," said Dr. Hesham Sadek, assistant professor of internal medicine in the division of cardiology, and the senior author of a study in the Proceedings of the National Academy of Sciences.

Each year, nearly 1 million people in the United States have a heart attack, while about 600,000 die of cardiovascular disease annually. Heart disease is the leading cause of death in both men and women, according to figures from the Centers for Disease Control and Prevention.

As researchers worldwide strive to find ways that help the human heart cope with myriad illnesses and injuries, scientists at UT Southwestern have focused their attention on the heart's regenerative capabilities. In 2011, a team led by Dr. Eric Olson, chairman of molecular biology, and Dr. Sadek demonstrated that within three weeks of removing 15 percent of the newborn mouse heart, the organ was able to completely grow back the lost tissue, and as a result looked and functioned normally.

In the latest investigation, UTSW researchers found that hearts of young rodents mounted a robust regenerative response following myocardial infarction, but this restorative activity only occurs during the first week of life. They then discovered that a microRNA called miR-15 disables the regenerative capacity after one week, but when miR-15 is blocked, the regenerative process can be sustained much longer.

"It is a fresh perspective on an age-old problem," said Dr. Olson, director of the Nancy B. and Jake L. Hamon Center for Basic Research in Cancer, and the Nearburg Family Center for Basic and Clinical Research in Pediatric Oncology who is a co-corresponding author of the PNAS study. "We're encouraged by this initial finding because it provides us with a therapeutic opportunity to manipulate the heart's regenerative potential."

Further research will be needed to optimize the ways in which medical scientists, and eventually clinicians, may be able to control this regenerative process.

"This may well be the beginning of a new era in heart regeneration biology," Dr. Sadek said. "Our research provides hope that reawakening the regenerative capacity of adult mammalian hearts is within reach."
-end-
Other UT Southwestern investigators involved in the study are Dr. Beverly Rothermal, associate professor of internal medicine; Dr. Pradeep Mammen, assistant professor of internal medicine; Dr. Diana Canseco, postdoctoral researcher II of internal medicine; David Grinsfelder, research associate of internal medicine; and Brett Johnson, student research assistant of molecular biology. Former UTSW researchers involved are Dr. Ahmed Mahmoud, now at Harvard Medical Center; lead author Dr. Enzo Porrello, now at the University of Queensland in Australia; and Emma Simpson, research assistant in pathology.

MiRagen Therapeutics, a biotechnology company co-founded by Dr. Olson and others, is working to develop a new class of microRNA-based therapeutics to enhance heart repair by modulation of miR-15 and other microRNAs.

The study was funded by the National Institutes of Health, the American Heart Association, the National Heart Foundation of Australia, the Leducq Foundation, the Donald W. Reynolds Center for Clinical Cardiovascular Research, and the Robert A. Welch Foundation.

This news release is available on our World Wide Web home page at www.utsouthwestern.edu/home/news/index.html

To automatically receive news releases from UT Southwestern via email, subscribe at www.utsouthwestern.edu/receivenews

UT Southwestern Medical Center

Related Heart Attack Articles from Brightsurf:

Top Science Tip Sheet on heart failure, heart muscle cells, heart attack and atrial fibrillation results
Newly discovered pathway may have potential for treating heart failure - New research model helps predict heart muscle cells' impact on heart function after injury - New mass spectrometry approach generates libraries of glycans in human heart tissue - Understanding heart damage after heart attack and treatment may provide clues for prevention - Understanding atrial fibrillation's effects on heart cells may help find treatments - New research may lead to therapy for heart failure caused by ICI cancer medication

Molecular imaging identifies link between heart and kidney inflammation after heart attack
Whole body positron emission tomography (PET) has, for the first time, illustrated the existence of inter-organ communication between the heart and kidneys via the immune system following acute myocardial infarction.

Muscle protein abundant in the heart plays key role in blood clotting during heart attack
A prevalent heart protein known as cardiac myosin, which is released into the body when a person suffers a heart attack, can cause blood to thicken or clot--worsening damage to heart tissue, a new study shows.

New target identified for repairing the heart after heart attack
An immune cell is shown for the first time to be involved in creating the scar that repairs the heart after damage.

Heart cells respond to heart attack and increase the chance of survival
The heart of humans and mice does not completely recover after a heart attack.

A simple method to improve heart-attack repair using stem cell-derived heart muscle cells
The heart cannot regenerate muscle after a heart attack, and this can lead to lethal heart failure.

Mount Sinai discovers placental stem cells that can regenerate heart after heart attack
Study identifies new stem cell type that can significantly improve cardiac function.

Fixing a broken heart: Exploring new ways to heal damage after a heart attack
The days immediately following a heart attack are critical for survivors' longevity and long-term healing of tissue.

Heart patch could limit muscle damage in heart attack aftermath
Guided by computer simulations, an international team of researchers has developed an adhesive patch that can provide support for damaged heart tissue, potentially reducing the stretching of heart muscle that's common after a heart attack.

How the heart sends an SOS signal to bone marrow cells after a heart attack
Exosomes are key to the SOS signal that the heart muscle sends out after a heart attack.

Read More: Heart Attack News and Heart Attack Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.