Nav: Home

Stabilizing evolutionary forces keep ants strong

December 20, 2016

Hokkaido University researchers are finding evidence of natural selection that maintains the status quo among ant populations.

A type of natural selection, called "stabilizing selection", is thought to maintain functional characteristics in species. But it is difficult to find evidence of this type of selection through research.

"Random genetic drift", on the other hand, where genetic variations occur randomly over time, is an evolutionary process that affects characteristics under "weak selection", implying that maintaining these characteristics is generally unimportant.

Hokkaido University researchers studied two ant species in Japan and Korea that were molecular-phylogenetically indiscriminate - thus they could be considered one species - and found evidence that there were different selection forces at play on different body parts.

The researchers first observed how ants use a tiny spur that projects from their legs. They found the front spurs were frequently used to clean the antennae, a major sensory organ in ants. By contrast, the hind spurs were only seldom used to scratch the back surface of the abdomen where no important organs were found.

The team assumed that natural selection forces would strongly affect the front spur, due to its relative importance and its special brush-shape as a cleaning organ. They also assumed that the less functionally important hind spur would be relatively unaffected by natural selection forces.

The researchers found significant genetic differences between ten ant populations of the species, implying there is limited gene flow between them. They also found limited evidence of inbreeding within the populations. This means that any observed morphological differences within and between the populations would reflect how strongly natural selection acted on each character.

Comparing the spurs in the ant populations, they found significant variations in the lengths of the less important hind spurs, which corresponds to the random genetic drift that occurs over time. They also found a smaller degree of variation in the length of the front spur among and between the ant populations.

"Our results suggest that stabilizing selection is at play, maintaining these functionally important characteristics in each population, while less important characteristics have diversified over time," says Eisuke Hasegawa, the corresponding author of the paper published in Scientific Reports. "Further investigations should help us understand the evolutionary forces that generate diversity and similarity among populations," he says.
-end-


Hokkaido University

Related Natural Selection Articles:

Ongoing natural selection against damaging genetic mutations in humans
Investigators report that, as a species, humans are able to keep the accumulation of damaging mutations in check because each additional mutation that's added to a genome causes larger, and larger consequences, decreasing an individual's ability to pass on genetic material.
HIV co-infection influences natural selection on M. tuberculosis
While M. tuberculosis has been evolving with humans for thousands of years, HIV co-infections create host immunological environments that this bacterium has not encountered before and could, therefore, be nudging it to evolve new characteristics.
The selection of archaeological research material should be re-evaluated
A systematically collected material produces a more exact image of the excavated objects.
Climate change altered the natural selection -- large forehead patch no longer a winner
In a new study, researchers at Uppsala University have found evidence of that climate change upends selection of face characteristics in the collared flycatcher.
How natural selection acted on 1 penguin species over the past quarter century
University of Washington biologist Dee Boersma and her colleagues combed through 28 years' worth of data on Magellanic penguins to search for signs that natural selection -- one of the main drivers of evolution -- may be acting on certain penguin traits.
More is better when it comes to online product selection
Retailers should take advantage of the unlimited retail space online and offer everything they sell.
Selection pressures push plants over adaption cliff
New simulations by researchers at the University of Warwick and UCL's Institute of Archaeology of plant evolution over the last 3000 years have revealed an unexpected limit to how far useful crops can be pushed to adapt before they suffer population collapse.
Long-term response to selection predictable regardless of genetic architecture
In their latest publication in the Proceedings of the National Academy of Sciences (PNAS) Tiago Paixao, Postdoc, and Nick Barton, Professor at the Institute of Science and Technology Austria, addressed the controversial role of gene interactions (or epistasis), where the effect of one gene is affected by the presence of other genes, in the response to selection for two extremely different scenarios of evolutionary mechanisms.
Applying parameter selection and verification techniques to an HIV model
Physical and biological models often have hundreds of inputs, many of which may have a negligible effect on a model's response.
Evolutionary 'selection of the fittest' measured for the first time
A difference of one hundredth of a percent in fitness is sufficient to select between winners and losers in evolution.

Related Natural Selection Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...