Nav: Home

New point of attack against stomach bacterium Helicobacter pylori

December 20, 2016

There is a strong suspicion that Helicobacter pylori is linked to the development of stomach cancer. Now an international team of researchers led by Prof. Donald R. Ronning (University of Toledo, USA) has used neutrons to unlock the secret to the functionality of an important enzyme in the bacterium's metabolism. This could be used as a point of attack for new medications. The team made the corresponding measurements at the neutron sources in Oak Ridge (USA) and at the research neutron source FRM II of the Technical University of Munich (TUM).

One in every two people everywhere in the world has it in his or her stomach: Helicobacter pylori. Ulcers and chronic gastritis are the most common illnesses associated with this bacterium. Up to now the standard therapy used to combat this stomach germ has been a combination of two antibiotics and a proton pump inhibitor. But this treatment is only successful in 70 percent of cases, and an increasing level of resistance is developing. For quite some time now scientists have therefore been searching for alternative medications to fight this dangerous bacterium.

In contrast to humans and to many helpful bacteria, H. pylori uses a special enzyme to synthesize vitamin K2. As a result, this enzyme, 5'-methylthioadenosine nucleosidase (MTAN), offers very promising prospects for the development of a medication that acts specifically against H. pylori without harming useful bacteria or even human cells.

Structural determination with neutrons

The enzyme MTAN is part of an important step in the synthesis of vitamin K2. Hydrogen bonds bind a precursor of the vitamin in order to cut off a side chain. But the positions and position changes of the hydrogen atoms essential to this process were not previously known with certainty.

The usual method of structural determination for enzymes, crystal structure analysis using x-ray radiation, is of little help here, since the x-ray radiation is almost blind to hydrogen atoms. Therefore, the researchers based their structural determination on neutrons, which are particularly sensitive to hydrogen atoms.

The scientists investigated different variations of the enzyme at the BIODIFF diffractometer, operated jointly by the TUM and the Jülich Centre for Neutron Science (JCNS) in the Heinz Maier-Leibnitz Zentrum in Garching north of Munich, and at the Oak Ridge National Laboratory (USA) neutron source. The joint measurements allowed them draw a detailed picture of the enzyme's mode of action.

"Now that we know the exact process of the reaction and the binding sites of the enzyme involved, it's possible to develop molecules that block exactly this process," says TUM biologist Andreas Ostermann, who supervises the instrument at the FRM II together with Dr. Tobias Schrader (JCNS).
-end-
The publication included researchers from the University of Toledo (Toledo, USA), Victoria University of Wellington (New Zealand), the Heinz Maier-Leibnitz research neutron source at the Technical University of Munich (TUM), the Jülich Centre for Neutron Science and the Oak Ridge National Laboratory (USA). The research was supported by funds from the Center for the Advancement of Science in Space (USA) and the National Institute of Allergy and Infectious Disease (USA). X-ray structure data were measured at the Advanced Photon Source of the Argonne National Laboratory (USA) with the support of the Michigan Economic Development Corporation.

Publication:

Neutron structures of the Helicobacter pylori 5?-methylthioadenosine nucleosidase highlight proton sharing and protonation states
Michael T. Banco, Vidhi Mishra, Andreas Ostermann, Tobias E. Schrader, Gary B. Evans, Andrey Kovalevsky, and Donald R. Ronning
PNAS, November 16, 2016, doi:10.1073/pnas.1609718113

Technical University of Munich (TUM)

Related Enzyme Articles:

Enzyme catalyzed decomposition of 4-hydroxycyclophosphamide
Oxazaphosphorine cytostatics (Cyclophosphamide, Ifosfamide) are often used and very effective anticancer agents; but so far little is known about the molecular basis for the antitumor effect.
The carpenter enzyme gives DNA the snip
Enzyme follows a two-step verification system before cutting and repairing DNA damage.
Cellular senescence prevented by the SETD8 enzyme
An enzyme that blocks cellular senescence and its mechanisms has been discovered by a Japanese research team.
Enzyme key to learning in fruit flies
University of California, Riverside-led research finds enzyme that is key to learning in fruit flies.
Old enzyme, new role
A team of researchers at the University of Delaware has discovered a new function for an enzyme that has long been known to have a central role in bacterial metabolism.
Enzyme research provides a new picture of depression
Depression is the predominant mental disease and constitutes the most common cause of morbidity in developed countries.
Mysteries of enzyme mechanism revealed
International team led by University of Leicester unveil a hidden step in enzyme mechanism.
Single enzyme controls 2 plant hormones
Scientists at Washington University in St. Louis have isolated the first enzyme shown to be capable of controlling the levels of two distinct plant hormones, involved both in normal growth and in responses to infections.
New enzyme-mapping advance could help drug development
Scientists at MIT and the University of São Paulo in Brazil have identified the structure of an enzyme that could be a good target for drugs combatting three diseases common in the developing world.
Severity of enzyme deficiency central to favism
The congenital disease favism causes sickness and even jaundice in patients after they consume beans.

Related Enzyme Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...