Epigenetic changes promoting cancer metastasis identified

December 20, 2016

Latest research from New Zealand's University of Otago is shedding new light on why and how cancer cells spread from primary tumours to other parts of the body. This phenomenon - known as metastasis - causes about 90 per cent of all cancer deaths.

The Otago findings, published in the leading international journal Oncotarget, may pave the way for new therapies that prevent melanoma and other cancers from their deadly seeding of secondary tumours.

Department of Pathology researchers Dr Aniruddha Chatterjee and Professor Mike Eccles are lead authors of the study, which investigated epigenetic changes in melanoma cells.

Epigenetics involves changes to the way genes behave - such as their being switched on or off through the addition of methyl groups to a gene's DNA segments.

After comparing primary and metastatic melanoma cells from the same patients, Dr Chatterjee says the research team identified thousands of epigenetic changes - and, crucially, several that were common to all the metastatic cells.

"We believe that these may be the key drivers that allow melanoma to metastasise," he says.

Additionally, the team identified a new function in melanoma of a gene called Early B Cell Factor 3 (EBF3).

"We found this gene gains more DNA methylation when primary melanoma progresses to its metastatic version, and that the gene expresses itself highly in the latter."

When the researchers used molecular techniques that decreased EBF3 expression, both primary and metastatic melanoma cells grew less aggressively and behaved less invasively.

Dr Chatterjee says earlier searches for genetic - rather than epigenetic - drivers of metastasis had not been very fruitful.

"Over the years, very few genetic mutations have been identified as drivers of metastasis. Instead, our approach looked at the changes in the way genes in cancer cells are expressed, rather than changes to the genetic code itself," he says.

Dr Chatterjee says unlike genetic changes, epigenetic changes are reversible.

"So if we understand the key changes that underpin metastasis, then not only are we potentially able to monitor for their presence, but also to design new therapies to target and correct them to prevent metastasis of tumours."
-end-
The research of mapping the epigenetic patterns was made possible through a cutting edge technique called Reduced Representation Bisulfite Sequencing (RRBS) that Dr Chatterjee, Dr Peter Stockwell (also a co-author in the recent paper) and colleagues at Otago have pioneered in New Zealand.

University of Otago

Related Cancer Cells Articles from Brightsurf:

Cancer researchers train white blood cells to attacks tumor cells
Scientists at the National Center for Tumor Diseases Dresden (NCT/UCC) and Dresden University Medicine, together with an international team of researchers, were able to demonstrate that certain white blood cells, so-called neutrophil granulocytes, can potentially - after completing a special training program -- be utilized for the treatment of tumors.

New way to target some rapidly dividing cancer cells, leaving healthy cells unharmed
Scientists at Johns Hopkins Medicine and the University of Oxford say they have found a new way to kill some multiplying human breast cancer cells by selectively attacking the core of their cell division machinery.

Breast cancer cells use message-carrying vesicles to send oncogenic stimuli to normal cells
According to a Wistar study, breast cancer cells starved for oxygen send out messages that induce oncogenic changes in surrounding normal epithelial cells.

Breast cancer cells turn killer immune cells into allies
Researchers at Johns Hopkins University School of Medicine have discovered that breast cancer cells can alter the function of immune cells known as Natural killer (NK) cells so that instead of killing the cancer cells, they facilitate their spread to other parts of the body.

Breast cancer cells can reprogram immune cells to assist in metastasis
Johns Hopkins Kimmel Cancer Center investigators report they have uncovered a new mechanism by which invasive breast cancer cells evade the immune system to metastasize, or spread, to other areas of the body.

Engineered immune cells recognize, attack human and mouse solid-tumor cancer cells
CAR-T therapy has been used successfully in patients with blood cancers such as lymphoma and leukemia.

Drug that keeps surface receptors on cancer cells makes them more visible to immune cells
A drug that is already clinically available for the treatment of nausea and psychosis, called prochlorperazine (PCZ), inhibits the internalization of receptors on the surface of tumor cells, thereby increasing the ability of anticancer antibodies to bind to the receptors and mount more effective immune responses.

Engineered bone marrow cells slow growth of prostate and pancreatic cancer cells
In experiments with mice, researchers at the Johns Hopkins Kimmel Cancer Center say they have slowed the growth of transplanted human prostate and pancreatic cancer cells by introducing bone marrow cells with a specific gene deletion to induce a novel immune response.

First phase i clinical trial of CRISPR-edited cells for cancer shows cells safe and durable
Following the first US test of CRISPR gene editing in patients with advanced cancer, researchers report these patients experienced no negative side effects and that the engineered T cells persisted in their bodies -- for months.

Zika virus' key into brain cells ID'd, leveraged to block infection and kill cancer cells
Two different UC San Diego research teams identified the same molecule -- αvβ5 integrin -- as Zika virus' key to brain cell entry.

Read More: Cancer Cells News and Cancer Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.