Nav: Home

Going green with nanotechnology

December 20, 2016

Nanotechnology offers many chances to benefit the environment and health. It can be applied to save raw materials and energy, develop enhanced solar cells and more efficient rechargeable batteries and replace harmful substances with eco-compatible solutions.

"Nanotechnology is a seminal technology. The UMWELTnanoTECH project association has delivered excellent results. Even the smallest achievements can make a huge contribution to protecting the environment. We must treat the opportunities this future technology offers with responsibility; its eco-compatible use has top priority," said the Bavarian Minister of the Environment, Ulrike Scharf, in Erlangen on 23 November 2016 where the results were presented at the international congress "Next Generation Solar Energy Meets Nanotechnology". For three years, the Bavarian State Ministry for the Environment and Consumer Protection had financed the association consisting of ten individual projects with around three million euros.

Three Würzburg projects

Three of the ten projects were located in Würzburg. Professor Vladimir Dyakonov from the Department of Physics headed the project for environmentally compatible, highly efficient organic solar cells; he was also the spokesman of the "Organic Photovoltaics" section. Anke Krüger, Professor of Chemistry, was in charge of the project on ultra-fast electrical stores based on nano-diamond composites.

Responsibility for the third project rested with Professor Gerhard Sextl, Head of the Fraunhofer Institute for Silicate Research titled "Hybrid capacitors for smart grids and regenerative energy technologies". Sextl, who holds the Chair for Chemical Technology of Material Synthesis at the Julius-Maximilians-Universität (JMU) Würzburg, was also the spokesman of the "Energy storage" section.

Below are the three projects from Würzburg and their results.

Eco-friendly inks for organic solar cells

Organic solar cells have become quite efficient, converting about eleven percent of the solar energy received into electricity. What is more, they are relatively easy to manufacture using ink-jet printing processes where organic nanoparticles are deposited on non-elastic or flexible carrier materials with the help of solvents. This enables new applications in architecture, for example integrating solar cells in window façades or cladding concave surfaces.

There is, however, a catch to it: So far, most ink-jet printing processes have been based on toxic solvents such as dichlorobenzene. These substances are harmful for humans and the environment and require extensive and costly standards of safety.

The Professors Vladimir Dyakonov and Christoph Brabec (University of Erlangen-Nuremberg) have managed to use nanomaterials to develop ecologically compatible photovoltaic inks based on water or alcohol with equal efficiency. Moreover, the research team has developed new simulation processes: "They allow us to predict which combinations of solvents and materials are suitable for the eco-friendly production of organic solar cells," Dyakonov explains.

Contact

Prof. Dr. Vladimir Dyakonov, Department of Physics, University of Würzburg, T +49 931 31-83111
dyakonov@physik.uni-wuerzburg.de

To the homepage of Vladimir Dyakonov

Nanodiamonds for ultra-fast electrical storage

In order to build highly efficient electric cars, more powerful energy stores are needed as the standard batteries still have some drawbacks, including low cycle stability and very limited power density. The first means that the battery capacity decreases following multiple charging and discharging cycles. The latter implies that only a fraction of the energy store is used during fast charging or discharging.

Supercapacitors play an important role as highly efficient energy stores besides batteries, because they outperform rechargeable batteries in terms of cycle stability and power density. Their energy density, however, is much lower compared with lithium-ion batteries. This is why supercapacitors need to be much bigger in size than batteries in order to deliver comparable amounts of energy.

Professor Anke Krüger has teamed up with Dr Gudrun Reichenauer from the Bavarian Center for Applied Energy Research (ZAE Bayern) to make progress in this regard. Their idea was to build the supercapacitors' electrodes not only of active charcoal, but to modify them using other carbon materials, namely nanodiamonds and carbon onions, which are small particles that have multiple layers like an onion.

Their approach is promising: By combining nanomaterials with suitable electrolytes, the performance parameters of the supercapacitors can be boosted. "Based on these findings, it is now possible to build application-oriented energy stores and test their applicability," Krüger further.

Contact

Prof. Dr. Anke Krueger, Institute of Organic Chemistry, University of Würzburg, T +49 931 31-85334, krueger@chemie.uni-wuerzburg.de

To the homepage of Anke Krüger

Increased storage capacity of hybrid capacitors

More efficient and faster energy stores were also the research focus of Professor Gerhard Sextl's project. His research team at the University of Würzburg managed to develop so-called hybrid capacitors further into highly efficient energy stores that can be manufactured in an environmentally compatible process.

Hybrid capacitors are a combination of supercapacitors based on electrochemical double-layer capacitors and charge storage in a battery. Firstly, they are capable of storing energy quickly by forming an electrochemical double layer as in a supercapacitor and also deliver the energy promptly when it is needed. Secondly, they hold more energy due to lithium ions embedded in an active battery material, analogously to lithium-ion batteries. By combining the two storage mechanisms, it is possible to implement systems with a high energy and power density at low costs.

The electrodes are the heart of the hybrid capacitors. They are coated with modified active materials: lithium iron phosphate and lithium titanate. This allows achieving storage capacities which are twice as high as those relying on conventional supercapacitor electrode materials.

"We have managed to develop a material that combines the advantages of both systems. This has brought us one step closer to implementing a new, fast and reliable storage concept," Sextl says. The activities at the university were supported by the Fraunhofer Institute for Silicate Research in Würzburg, one of the leading battery research centres in Germany.

Contact

Prof. Dr. Gerhard Sextl, Department for Chemical Technology of Material Synthesis, University of Würzburg, and Fraunhofer Institute for Silicate Research ISC, T +49 931 4100-100

To the homepage of the Fraunhofer Institute

Website of the project association.
-end-


University of Würzburg

Related Energy Storage Articles:

Breakthrough enables storage and release of mechanical waves without energy loss
A new discovery by researchers at the Advanced Science Research Center at The Graduate Center, CUNY could allow light and sound waves to be stored intact for an indefinite period of time and then direct it toward a desired location on demand.
How much energy storage costs must fall to reach renewable energy's full potential
The cost of energy storage will be critical in determining how much renewable energy can contribute to the decarbonization of electricity.
Energy storage in the Midwest and beyond: A timely analysis
As the Federal Energy Regulatory Commission (FERC) released an update to last year's order on energy storage, MRS Energy & Sustainability today publishes a timely collection of papers that unpack the issue of energy storage in the Midwest and beyond.
Engineered bacteria could be missing link in energy storage
One of the big issues with sustainable energy systems is how to store electricity that's generated from wind, solar and waves.
Need more energy storage? Just hit 'print'
Drexel University researchers have developed a conductive ink made from a special type of material they discovered, called MXene, that was used by the Trinity College researchers to print components for electronic devices.
More Energy Storage News and Energy Storage Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...