Nav: Home

Why does nuclear fission produce pear-shaped nuclei?

December 20, 2018

Tsukuba, Japan - Nuclear fission is a process in which a heavy nucleus split into two. Most of the actinides nuclei (Plutonium, Uranium, Curium...) fission asymmetrically with one big fragment and one small. Empirically, the heavy fragment presents on average a Xenon element (with charge number Z=54) independently from the initial fissioning nucleus. To understand the mechanism that determines the number of protons and neutrons in each of the two fragments has been a longstanding puzzle.

It was expected that the deformation of the fragments could play a role. Indeed, the atomic nuclei can have different shapes depending on their internal structure. Some of them are spherical, most of them are deformed like a rugby ball and a few have a pear-shaped deformation. The internal structure of the nuclei varies as a function of the number of protons and neutrons composing the nuclei.

To describe dynamically the fission process, the state of the art of nuclear theory has been used by Guillaume Scamps (University of Tsukuba) and Cédric Simenel (Australian National University). This simulation of the nuclear fission uses the quantum-mechanics to takes into account the motion of the nucleons in the nuclei and uses adequate simplifications to solve the many-body problem.

Using that model, in the case of the 240Pu, it has been found that the fission fragments are preferably formed with a pear-shaped deformation (see figure). This pear-shaped deformation is due to the strong Coulomb repulsion of the two fragments. This initial deformation favours nuclei which are pear-shaped in their ground state. This is the case of the Xenon due to some internal structure effects associated with a number of proton Z=54.

This mechanism is strong enough to strongly influence the partition of nucleons in several fissioning systems. This mechanism has been found in simulations of the fission of 230Th, 234U, 236U, 246Cm and 250Cf in agreement with the experimental observations.

These findings may explain in future, surprising recent observations of asymmetric fission of lighter than lead nuclei, and improve predictions of fission properties of exotic nuclei which impact the abundance of elements produced in the astrophysical processes.
-end-


University of Tsukuba

Related Neutrons Articles:

A single proton can make a heck of a difference
Scientists from the RIKEN Nishina Center for Accelerator-Based Science and collaborators have shown that knocking out a single proton from a fluorine nucleus -- transforming it into a neutron-rich isotope of oxygen -- can have a major effect on the state of the nucleus.
Researchers overcome the space between protons and neutrons to study heart of matter
Nuclear physicists have entered a new era for probing the strongest force in the universe at its very heart with a novel method of accessing the space between protons and neutrons in dense environments.
New neutron detector can fit in your pocket
Researchers at Northwestern University and Argonne National Laboratory have developed a new material that opens doors for a new class of neutron detectors.
Neutrons optimize high efficiency catalyst for greener approach to biofuel synthesis
Researchers led by the University of Manchester used neutron scattering at Oak Ridge National Laboratory in the development of a catalyst that converts biomass into liquid fuel with remarkably high efficiency and provides new possibilities for manufacturing renewable energy-related materials.
Scientist confirm a new 'magic number' for neutrons
An international collaboration led by scientists from the University of Hong Kong, RIKEN (Japan), and CEA (France) have used the RI Beam Factory (RIBF) at the RIKEN Nishina Center for Accelerator-base Science to show that 34 is a ''magic number'' for neutrons, meaning that atomic nuclei with 34 neutrons are more stable than would normally be expected.
Students make neutrons dance beneath UC Berkeley campus
Nuclear reactors are still the primary source for strong neutron beams to create isotopes for geologic dating, radiography and medicine, but researchers at UC Berkeley have enlisted engineering students in building a tabletop neutron source that could be nearly as effective.
Visualizing strong magnetic fields with neutrons
Researchers at the Paul Scherrer Institute PSI have developed a new method with which strong magnetic fields can be precisely measured.
Nuclear 'magic numbers' collapse beyond the doubly magic nickel 78
Scientists have demonstrated that nickel 78, a neutron-rich 'doubly magic' isotope of nickel with 28 protons and 50 neutrons, still maintains a spherical shape that allows it to be relatively stable despite the large imbalance in the number of protons and neutrons.
Through thick and thin: Neutrons track lithium ions in battery electrodes
Lithium-ion batteries are expected to have a global market value of $47 billion by 2023, but their use in heavy-duty applications such as electric vehicles is limited due to factors such as lengthy charge and discharge cycles.
'Featherweight oxygen' discovery opens window on nuclear symmetry
Researchers at Washington University in St. Louis have discovered and characterized a new form of oxygen dubbed 'featherweight oxygen' -- the lightest-ever version of the familiar chemical element oxygen, with only three neutrons to its eight protons.
More Neutrons News and Neutrons Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Making Amends
What makes a true apology? What does it mean to make amends for past mistakes? This hour, TED speakers explore how repairing the wrongs of the past is the first step toward healing for the future. Guests include historian and preservationist Brent Leggs, law professor Martha Minow, librarian Dawn Wacek, and playwright V (formerly Eve Ensler).
Now Playing: Science for the People

#566 Is Your Gut Leaking?
This week we're busting the human gut wide open with Dr. Alessio Fasano from the Center for Celiac Research and Treatment at Massachusetts General Hospital. Join host Anika Hazra for our discussion separating fact from fiction on the controversial topic of leaky gut syndrome. We cover everything from what causes a leaky gut to interpreting the results of a gut microbiome test! Related links: Center for Celiac Research and Treatment website and their YouTube channel
Now Playing: Radiolab

The Flag and the Fury
How do you actually make change in the world? For 126 years, Mississippi has had the Confederate battle flag on their state flag, and they were the last state in the nation where that emblem remained "officially" flying.  A few days ago, that flag came down. A few days before that, it coming down would have seemed impossible. We dive into the story behind this de-flagging: a journey involving a clash of histories, designs, families, and even cheerleading. This show is a collaboration with OSM Audio. Kiese Laymon's memoir Heavy is here. And the Hospitality Flag webpage is here.