Nav: Home

Discovery could lead to munitions that go further, much faster

December 20, 2018

Researchers from the U.S. Army and top universities discovered a new way to get more energy out of energetic materials containing aluminum, common in battlefield systems, by igniting aluminum micron powders coated with graphene oxide.

This discovery coincides with the one of the Army's modernization priorities: Long Range Precision Fires. This research could lead to enhanced energetic performance of metal powders as propellant/explosive ingredients in Army's munitions.

Lauded as a miracle material, graphene is considered the strongest and lightest material in the world. It's also the most conductive and transparent, and expensive to produce. Its applications are many, extending to electronics by enabling touchscreen laptops, for example, with light-emitting diode, or LCD, or in organic light-emitting diode, or OLED displays and medicine like DNA sequencing. By oxidizing graphite is cheaper to produce en masse. The result: graphene oxide (GO).

Although GO is a popular two-dimensional material that has attracted intense interest across numerous disciplines and materials applications, this discovery exploits GO as an effective light-weight additive for practical energetic applications using micron-size aluminum powders (μAl), i.e., aluminum particles one millionth of a meter in diameter.

The research team published their findings in the October edition of ACS Nano with collaboration from the RDECOM Research Laboratory, the Army's corporate research laboratory (ARL), Stanford University, University of Southern California, Massachusetts Institute of Technology and Argonne National Laboratory.

This new published work signals a beginning at ARL for the development of functionalized particles as novel energetics under several new leveraged programs led by Drs. Chi-Chin Wu and Jennifer Gottfried. ARL is leading joint scientific efforts with the University of Tennessee, Texas Tech University, Army Research, Development and Engineering Center at Picatinny, N.J., and with the Air Force Research Laboratory establishing a new research avenue to develop superior novel metal propellant/explosive ingredients to protect more lives for the Army warfighters.

"Because aluminum (Al) can theoretically release a large quantity of heat (as much as 31 kilojoules per gram) and is relatively cheap due to its natural abundance, μAlpowders have been widely used in energetic applications," said Wu. However, they are very difficult to be ignited by an optical flash lamp due to poor light absorption. To improve the light absorption of mAl during ignition, it is often mixed with heavy metallic oxides which decrease the energetic performance," Wu said.

Nanometer-sized Al powders (i.e., one billionth of a meter in diameter) can be ignited more easily by a wide-area optical flash lamp to release heat at a much faster rate than can be achieved using conventional single-point methods such as hotwire ignition. Unfortunately, nanometer-sized Al powders are very costly.

The team demonstrated the value of μAl/GO composites as potential propellant/explosive ingredients through a collaborative research effort led by Professor Xiaolin Zheng at Stanford University and supported by ARL's Dr. Chi-Chin Wu and Dr. Jennifer Gottfried. This research demonstrated that GO can enable the efficient ignition of μAl via an optical flash lamp, releasing more energy at a faster rate thus significantly improving the energetic performance of μAl beyond that of the more expensive nanometer-sized Al powder. The team also discovered that the ignition and combustion of μAl powders can be controlled by varying the GO content to achieve the desired energy output.

Images showing the structure of the μAl/GO composite particles were obtained by high resolution transmission electron (TEM) microscopy performed by Wu, a materials researcher who leads the plasma research for the Energetic Materials Science Branch in the Lethality Division of the Weapons and Materials Research Directorate at ARL. "It is exciting to see with our own eyes through advanced microscopy such as TEM how a simple mechanical mixing process can be used to nicely wrap the μAl particles in a GO sheet," said Wu.

In addition to demonstrating enhanced combustion effects from optical flash lamp heating of the μAl/GO composites by the Stanford group, Gottfried, a physical scientist at ARL, demonstrated that the GO increased the amount of μAl reacting on the microsecond timescale, i.e., one millionth of a second a regime analogous to the release of explosive energy during a detonation event. Upon initiation of the μAl/GO composite with a pulsed laser using a technique called laser-induced air shock from energetic materials (LASEM), the exothermic reactions of the μAl/GO accelerated the resulting laser-induced shock velocity beyond that of pure μAl or pure GO. According to Gottfried, "the μAl/GO composite thus has the potential to increase the explosive power of military formulations, in addition to enhancing the combustion or blast effects." As a result, this discovery could be used to improve the range and/or lethality of existing weapons systems.
-end-
Details of this breakthrough work are described in the team's October 15 published paper entitled "Energetic Performance of Optically Activated Aluminum/Graphene Oxide Composites" by Yue Jiang, Sili Dang, Sungwook Hong, Jiheng Zhao, Sidi Huang, Chi-Chin Wu, Jennifer L. Gottfried, Ken-ichi Nomura, Ying Li, Subodh Tiwari, Rajiv K. Kalia, Priya Vashishta, Aiichiro Nakano, and Xiaolin Zheng in the high-impact journal ACS Nano (available online at http://dx.doi.org/10.1021/acsnano.8b06217).

U.S. Army Research Laboratory

Related Graphene Articles:

Graphene: The more you bend it, the softer it gets
New research by engineers at the University of Illinois combines atomic-scale experimentation with computer modeling to determine how much energy it takes to bend multilayer graphene -- a question that has eluded scientists since graphene was first isolated.
How do you know it's perfect graphene?
Scientists at the US Department of Energy's Ames Laboratory have discovered an indicator that reliably demonstrates a sample's high quality, and it was one that was hiding in plain sight for decades.
Graphene is 3D as well as 2D
Graphene is actually a 3D material as well as a 2D material, according to a new study from Queen Mary University of London.
Conductivity at the edges of graphene bilayers
For nanoribbons of bilayer graphene, whose edge atoms are arranged in zigzag patterns, the bands of electron energies which are allowed and forbidden are significantly different to those found in monolayer graphene.
How to purify water with graphene
Scientists from the National University of Science and Technology 'MISIS' together with their colleagues from Derzhavin Tambov State University and Saratov Chernyshevsky State University have figured out that graphene is capable of purifying water, making it drinkable, without further chlorination.
Decoupled graphene thanks to potassium bromide
The use of potassium bromide in the production of graphene on a copper surface can lead to better results.
1 + 1 does not equal 2 for graphene-like 2D materials
Physicists from the University of Sheffield have discovered that when two atomically thin graphene-like materials are placed on top of each other their properties change, and a material with novel hybrid properties emerges, paving the way for design of new materials and nano-devices.
Graphene's magic is in the defects
A team of researchers at the New York University Tandon School of Engineering and NYU Center for Neural Science has solved a longstanding puzzle of how to build ultra-sensitive, ultra-small electrochemical sensors with homogenous and predictable properties by discovering how to engineer graphene structure on an atomic level.
Graphene on the way to superconductivity
Scientists at HZB have found evidence that double layers of graphene have a property that may let them conduct current completely without resistance.
A human enzyme can biodegrade graphene
Graphene Flagship partners discovered that a natural human enzyme can biodegrade graphene.
More Graphene News and Graphene Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.