A lung-inspired design turns water into fuel

December 20, 2018

Scientists at Stanford University have designed an electrocatalytic mechanism that works like a mammalian lung to convert water into fuel. Their research, published December 20 in the journal Joule, could help existing clean energy technologies run more efficiently.

The act of inhaling and exhaling is so automatic for most organisms that it could be mistaken as simple, but the mammalian breathing process is actually one of the most sophisticated systems for two-way gas exchange found in nature. With each breath, air moves through the tiny, passage-like bronchioles of the lungs until it reaches diminutive sacs called alveoli. From there, the gas must pass into the bloodstream without simply diffusing, which would cause harmful bubbles to form. It's the unique structure of the alveoli--including a micron-thick membrane that repels water molecules on the inside while attracting them on the outer surface--that prevents those bubbles from forming and makes the gas exchange highly efficient.

Scientists in senior author Yi Cui's lab at the Department of Materials Science and Engineering at Stanford University drew inspiration from this process in order to develop better electrocatalysts: materials that increase the rate of a chemical reaction at an electrode. "Clean energy technologies have demonstrated the capability of fast gas reactant delivery to the reaction interface, but the reverse pathway--efficient gas product evolution from the catalyst/electrolyte interface--remains challenging," says Jun Li, the first author of the study.

The team's mechanism structurally mimics the alveolus and carries out two different processes to improve the reactions that drive sustainable technologies such as fuel cells and metal-air batteries.

The first process is analogous to exhalation. The mechanism splits water to produce hydrogen gas, a clean fuel, by oxidizing water molecules in the anode of a battery while reducing them in the cathode. Oxygen gas (along with the hydrogen gas) is rapidly produced and transported through a thin, alveolus-like membrane made from polyethylene--without the energy costs of forming bubbles.

The second process is more like inhalation and generates energy through a reaction that consumes oxygen. Oxygen gas is delivered to the catalyst at the electrode surface, so it can be used as reactant during electrochemical reactions.

Although it is still in the early phases of development, the design appears to be promising. The uncommonly thin nano-polyethylene membrane remains hydrophobic longer than conventional carbon-based gas diffusion layers, and this model is able to achieve higher current density rates and lower overpotential than conventional designs.

However, this lung-inspired design still has some room for improvement before it will be ready for commercial use. Since the nano-polyethylene membrane is a polymer-based film, it cannot tolerate temperatures higher than 100 degrees Celsius, which could limit its applications. The team believes this material may be replaced with similarly thin nanoporous hydrophobic membranes capable of withstanding greater heat. They are also interested in incorporating other electrocatalysts into the device design to fully explore their catalytic capabilities.

"The breathing-mimicking structure could be coupled with many other state-of-the-art electrocatalysts, and further exploration of the gas-liquid-solid three-phase electrode offers exciting opportunities for catalysis," says Jun Li.
This work was supported by Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division; the Stanford Nano Shared Facilities; and Stanford Nanofabrication Facility.

Joule, Li et al.: "Breathing-Mimicking Electrocatalysis for Oxygen Evolution and Reduction" https://www.cell.com/joule/fulltext/S2542-4351(18)30564-6

Joule (@Joule_CP) published monthly by Cell Press, is a new home for outstanding and insightful research, analysis and ideas addressing the need for more sustainable energy. A sister journal to Cell, Joule spans all scales of energy research, from fundamental laboratory research into energy conversion and storage up to impactful analysis at the global level. Visit: http://www.cell.com/joule. To receive Cell Press media alerts, contact press@cell.com.

Cell Press

Related Hydrogen Gas Articles from Brightsurf:

Hydrogen economy with mass production of high-purity hydrogen from ammonia
The Korea Institute of Science and Technology (KIST) has made an announcement about the technology to extract high-purity hydrogen from ammonia and generate electric power in conjunction with a fuel cell developed by a team led by Young Suk Jo and Chang Won Yoon from the Center for Hydrogen and Fuel Cell Research.

Highly efficient hydrogen gas production using sunlight, water and hematite
Hydrogen is a possible next generation energy solution, and it can be produced from sunlight and water using photocatalysts.

Superconductivity: It's hydrogen's fault
Last summer, it was discovered that there are promising superconductors in a special class of materials, the so-called nickelates.

New catalyst recycles greenhouse gases into fuel and hydrogen gas
Scientists have taken a major step toward a circular carbon economy by developing a long-lasting, economical catalyst that recycles greenhouse gases into ingredients that can be used in fuel, hydrogen gas, and other chemicals.

Hydrogen alarm for remote hydrogen leak detection
Tomsk Polytechnic University jointly with the University of Chemistry and Technology of Prague proposed new sensors based on widely available optical fiber to ensure accurate detection of hydrogen molecules in the air.

Preparing for the hydrogen economy
In a world first, University of Sydney researchers have found evidence of how hydrogen causes embrittlement of steels.

GMRT discovers a gigantic ring of hydrogen gas around a distant galaxy
A team of astronomers at the National Centre for Radio Astrophysics (NCRA-TIFR) in Pune, India, have recently discovered an extremely large ring composed primarily of neutral hydrogen gas around a distant galaxy named AGC 203001 using the Giant Metrewave Radio Telescope (GMRT).

Effects of natural gas assessed in study of shale gas boom in Appalachian basin
A new study estimated the cumulative effects of the shale gas boom in the Appalachian basin in the early 2000s on air quality, climate change, and employment.

Hydrogen boride nanosheets: A promising material for hydrogen carrier
Researchers at Tokyo Institute of Technology, University of Tsukuba, and colleagues in Japan report a promising hydrogen carrier in the form of hydrogen boride nanosheets.

Atmospheric pressure impacts greenhouse gas emissions from leaky oil and gas wells
Fluctuations in atmospheric pressure can heavily influence how much natural gas leaks from wells below the ground surface at oil and gas sites, according to new University of British Columbia research.

Read More: Hydrogen Gas News and Hydrogen Gas Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.