Revealing the structure of axons

December 20, 2019

Recent studies have shown that under the axonal membrane, rings composed of actin filaments give the structure its flexibility. But those studies had not been able to define the precise architecture of these rings. By combining two microscopy techniques, optical and electronic, French researchers have now managed to observe these rings at the molecular scale. They are formed of long braided actin filaments, braided like a Christmas wreath.

Axons, the threadlike part of a nerve cell that conducts impulses, are both flexible and strong, which makes them a mystery in the eyes of biologists. Recent studies have shown that under the axonal membrane, rings composed of actin filaments give the structure its flexibility. But those studies had not been able to define the precise architecture of these rings. By combining two microscopy techniques, optical and electronic, researchers at the Institut de Neurophysiopathologie (CNRS/Aix-Marseille Université) and the Institut de Myologie (INSERM/Sorbonne Université) have now managed to observe these rings at the molecular scale. They are formed of long braided actin filaments, braided like a Christmas wreath. This work, which brings key new insights into our understanding of axonal architecture, was published on 20 December 2019 in Nature Communications.
-end-


CNRS

Related Microscopy Techniques Articles from Brightsurf:

Ultracompact metalens microscopy breaks FOV constraints
As reported in Advanced Photonics, their metalens-integrated imaging device (MIID) exhibits an ultracompact architecture with a working imaging distance in the hundreds of micrometers.

Attosecond boost for electron microscopy
A team of physicists from the University of Konstanz and Ludwig-Maximilians-Universität München in Germany have achieved attosecond time resolution in a transmission electron microscope by combining it with a continuous-wave laser -- new insights into light-matter interactions.

Microscopy beyond the resolution limit
The Polish-Israeli team from the Faculty of Physics of the University of Warsaw and the Weizmann Institute of Science has made another significant achievement in fluorescent microscopy.

Quantum light squeezes the noise out of microscopy signals
Researchers at the Department of Energy's Oak Ridge National Laboratory used quantum optics to advance state-of-the-art microscopy and illuminate a path to detecting material properties with greater sensitivity than is possible with traditional tools.

Limitations of super-resolution microscopy overcome
The smallest cell structures can now be imaged even better: The combination of two microscopy methods makes fluorescence imaging with molecular resolution possible for the first time.

High-end microscopy refined
New details are known about an important cell structure: For the first time, two Würzburg research groups have been able to map the synaptonemal complex three-dimensionally with a resolution of 20 to 30 nanometres.

Developing new techniques to improve atomic force microscopy
Researchers from the University of Illinois at Urbana-Champaign have developed a new method to improve the noise associated with nanoscale chemical imaging using atomic force microscopy.

New discovery advances optical microscopy
New Illinois ECE research is advancing the field of optical microscopy, giving the field a critical new tool to solve challenging problems across many fields of science and engineering including semiconductor wafer inspection, nanoparticle sensing, material characterization, biosensing, virus counting, and microfluidic monitoring.

New microscopy method provides unprecedented look at amyloid protein structure
Neurodegenerative diseases such as Alzheimer's and Parkinson's are often accompanied by amyloid proteins in the brain that have become clumped or misfolded.

Novel 3D imaging technology makes fluorescence microscopy more efficient
A research team led by Dr Kevin Tsia from the University of Hong Kong (HKU), developed a new optical imaging technology -- Coded Light-sheet Array Microscopy (CLAM) -- which can perform 3D imaging at high speed, and is power efficient and gentle to preserve the living specimens during scanning at a level that is not achieved by existing technologies.

Read More: Microscopy Techniques News and Microscopy Techniques Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.