The 'airbag' that protects cells against stress

December 20, 2019

Scientists at the Centro Nacional de Investigaciones Cardiovasculares (CNIC) have identified the molecular mechanisms that allow our cells to adapt to, protect themselves against, and survive mechanical stress. The results, published today in Nature Communications, show that our cells produce molecules that act as a type of 'airbag' in response to mechanical stress. Without this protective and adaptive system, the heart, an organ subject to continuous mechanical forces, "would be unable to correctly perform its blood-pumping role," explained lead author Miguel Ángel del Pozo. First author Asier Echarri added that the findings "show the importance of identifying the molecular mechanisms that protect cells against mechanical stress."

Many physiological processes, such as embryonic development, wound healing, organ homeostasis, lipid storage, and muscular activity, involve exposure to diverse and potentially damaging mechanical forces. All living organisms, and the cells that compose them, are subject to different physical forces, both mechanical (gravity, impact, blood flow, muscle stretching, etc.) and electromagnetic.

Human cells are able to perceive, adapt to and respond to mechanical forces. According to Del Pozo, "These forces can sometimes be excessive, placing cells under a mechanical stress that can rupture the cell membrane and result in the death of affected cells. To avoid this rupture and thus prevent cell death, nature has evolved molecular sensors that 'switch on' in response to these forces and initiate adaptive and protective processes. The purpose of this response is to adapt cells to these forces before they cause tissue or organ damage."

The Nature Communications study identified relatively large folded or wrinkled structures surrounding cells that can unfold or flatten when the cell is stretched, thus giving cells an extra coating that prevents breakage upon excessive stretching. "It can be likened to an accordion, which unfolds as it is stretched, thus preventing it from breaking when pulled," explained the researchers. These folds thus function as a kind of 'airbag', cushioning cells against excessive mechanical stress.

The team also identified molecules that participate in this mechanism, permitting cells to perceive mechanical force and initiate the biochemical changes needed to adapt to mechanical stress.

The study was undertaken in partnership with CNIC scientist Jorge Alegre-Cebollada and researchers from the Institut Pasteur in Paris, Queensland University in Australia, and Donostia International Physics Center in San Sebastián. The team identified molecules with opposing functions; "one of the molecules (FBP17) protects the cell against mechanical stress, whereas another (ABL) makes the cell more sensitive to these forces", explained Del Pozo and Echarri.

Both molecules, working in an ordered fashion, "coordinate changes in the cell envelope that protect the cell and the cell skeleton, giving it the structure and solidity needed to resist mechanical stress," explained Dr Echarri.

The authors also managed to alter the amount or activity of these molecules in human cells; inhibiting the action of ABL increased protection against mechanical stress, whereas inhibition of FBP17 made cells more sensitive.

The findings are important because knowledge about how cells are protected against mechanical stress "will give us a better understanding of the molecular basis of diseases such as some forms of muscular dystrophy, cardiomyopathies, and lung or vascular diseases characterized by sensitivity to physical activity. The findings will also shed light on the mechanisms of injury to organs with a high level of mechanical activity, such as the heart, lungs, muscles, and blood vessels." The authors concluded that "This work opens the way to future therapies in patients with these conditions."
About the CNIC

The Centro Nacional de Investigaciones Cardiovasculares (CNIC), directed by Dr. Valentín Fuster, is dedicated to cardiovascular research and the translation of knowledge gained into real benefits for patients. The CNIC, recognized by the Spanish government as a Severo Ochoa center of excellence, is financed through a pioneering public-private partnership between the government (through the Carlos III Institute of Health) and the Pro-CNIC Foundation, which brings together 12 of the most important Spanish private companies.

Centro Nacional de Investigaciones Cardiovasculares Carlos III (F.S.P.)

Related Molecules Articles from Brightsurf:

Finally, a way to see molecules 'wobble'
Researchers at the University of Rochester and the Fresnel Institute in France have found a way to visualize those molecules in even greater detail, showing their position and orientation in 3D, and even how they wobble and oscillate.

Water molecules are gold for nanocatalysis
Nanocatalysts made of gold nanoparticles dispersed on metal oxides are very promising for the industrial, selective oxidation of compounds, including alcohols, into valuable chemicals.

Water molecules dance in three
An international team of scientists has been able to shed new light on the properties of water at the molecular level.

How molecules self-assemble into superstructures
Most technical functional units are built bit by bit according to a well-designed construction plan.

Breaking down stubborn molecules
Seawater is more than just saltwater. The ocean is a veritable soup of chemicals.

Shaping the rings of molecules
Canadian chemists discover a natural process to control the shape of 'macrocycles,' molecules of large rings of atoms, for use in pharmaceuticals and electronics.

The mysterious movement of water molecules
Water is all around us and essential for life. Nevertheless, research into its behaviour at the atomic level -- above all how it interacts with surfaces -- is thin on the ground.

Spectroscopy: A fine sense for molecules
Scientists at the Laboratory for Attosecond Physics have developed a unique laser technology for the analysis of the molecular composition of biological samples.

Looking at the good vibes of molecules
Label-free dynamic detection of biomolecules is a major challenge in live-cell microscopy.

Colliding molecules and antiparticles
A study by Marcos Barp and Felipe Arretche from Brazil published in EPJ D shows a model of the interaction between positrons and simple molecules that is in good agreement with experimental results.

Read More: Molecules News and Molecules Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to