Nav: Home

Space-time metasurface makes light reflect only in one direction

December 20, 2019

Light propagation is usually reciprocal meaning that the trajectory of light travelling in one direction is identical from that in the opposite direction. Breaking reciprocity can make light propagate only in one direction. Optical components that support such unidirectional flow of light, for example isolators and circulators, are indispensable building blocks in many modern laser and communication systems. They are currently almost exclusively based on the magneto-optic effect, making the devices bulky and difficult for integration. It is in great demand to have a magnetic-free route to achieve nonreciprocal light propagation in many optical applications.

Recently, scientists developed a new type of optical metasurface with which phase modulation in both space and time is imposed on the reflected light, leading to different paths for the forward and backward light propagation. For the first time, nonreciprocal light propagation in free space was realized experimentally at optical frequencies with such an ultrathin component.

"This is the first optical metasurface with controllable ultrafast time-varying properties that is capable of breaking optical reciprocity without a bulky magnet," said Xingjie Ni, the Charles H. Fetter Assistant Professor in Department of Electrical Engineering at the Pennsylvania State University. The results were published this week in Light: Science and Applications.

The ultrathin metasurface consists of a silver back-reflector plate supporting block-shaped, silicon nanoantennas with large nonlinear Kerr index at near-infrared wavelengths around 860?nm. Heterodyne interference between two laser lines that are closely spaced in frequency was used to create efficient travelling-wave refractive index modulation upon the nanoantennas, which leads to ultrafast space-time phase modulation with unprecedentedly large temporal modulation frequency of about 2.8 THz. This dynamic modulation technique exhibits great flexibility in tuning both spatial and temporal modulation frequencies. Completely asymmetric reflections in forward and backward light propagations were achieved experimentally with a wide bandwidth around 5.77 THz within a sub-wavelength interaction length of 150 nm.

Light reflected by the space-time metasurface acquires a momentum shift induced by the spatial phase gradient as well as a frequency shift arisen from the temporal modulation. It exhibits asymmetric photonic conversions between forward and backward reflections. In addition, by exploiting unidirectional momentum transfer provided by the metasurface geometry, selective photonic conversions can be freely controlled by designing an undesired output state to lie in the forbidden, i.e. non-propagative, region.

This approach exhibits excellent flexibility in controlling light both in momentum and energy space. It will provide a new platform for exploring interesting physics arisen from time-dependent material properties and will open a new paradigm in the development of scalable, integratable, magnet-free nonreciprocal devices.
-end-


Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences

Related Light Articles:

Painting with light: Novel nanopillars precisely control intensity of transmitted light
By shining white light on a glass slide stippled with millions of tiny titanium dioxide pillars, researchers at the National Institute of Standards and Technology (NIST) and their collaborators have reproduced with astonishing fidelity the luminous hues and subtle shadings of 'Girl With a Pearl Earring.'
Seeing the light: Researchers combine technologies for better light control
A new technology that can allow for better light control without requiring large, difficult-to-integrate materials and structures has been developed by Penn State researchers.
A different slant of light
Giant clams manipulate light to assist their symbiotic partner.
New light for plants
Scientists from ITMO in collaboration with their colleagues from Tomsk Polytechnic University came up with an idea to create light sources from ceramics with the addition of chrome: the light from such lamps offers not just red but also infrared (IR) light, which is expected to have a positive effect on plants' growth.
Scientists use light to accelerate supercurrents, access forbidden light, quantum world
Iowa State's Jigang Wang continues to explore using light waves to accelerate supercurrents to access the unique and potentially useful properties of the quantum world.
The power of light
As COVID-19 continues to ravage global populations, the world is singularly focused on finding ways to battle the novel coronavirus.
Seeing the light: MSU research finds new way novae light up the sky
An international team of astronomers from 40 institutes across 17 countries found that shocks cause most the brightness in novae.
Seeing the light: Astronomers find new way novae light up the sky
An international team of researchers, in a paper published today in Nature Astronomy, highlights a new way novae light up the sky: this is shocks from explosions that create the novae that cause most of the their brightness.
A funnel of light
Physicists of the University of Würzburg, in a joint collaboration with colleagues from the University of Rostock, have developed a light funnel apparatus.
Blinded by the light
A new paper researching a framework for understanding how light and noise pollution affects wildlife.
More Light News and Light Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: IRL Online
Original broadcast date: March 20, 2020. Our online lives are now entirely interwoven with our real lives. But the laws that govern real life don't apply online. This hour, TED speakers explore rules to navigate this vast virtual space.
Now Playing: Science for the People

#574 State of the Heart
This week we focus on heart disease, heart failure, what blood pressure is and why it's bad when it's high. Host Rachelle Saunders talks with physician, clinical researcher, and writer Haider Warraich about his book "State of the Heart: Exploring the History, Science, and Future of Cardiac Disease" and the ails of our hearts.
Now Playing: Radiolab

Falling
There are so many ways to fall–in love, asleep, even flat on your face. This hour, Radiolab dives into stories of great falls.  We jump into a black hole, take a trip over Niagara Falls, upend some myths about falling cats, and plunge into our favorite songs about falling. Support Radiolab by becoming a member today at Radiolab.org/donate.