HKU plant scientists identify new strategy to enhance rice grain yield

December 20, 2019

Rice provides a daily subsistence for about three billion people worldwide and its output must keep pace with a growing global population. In light of this, the identification of genes that enhance grain yield and composition is much desired. Findings from a research project led by Professor Mee-Len Chye, Wilson and Amelia Wong Professor in Plant Biotechnology from the School of Biological Sciences of The University of Hong Kong (HKU), with postdoctoral fellows Dr Guo Zehua and Dr Shiu-Cheung Lung, in collaboration with researchers from the University of Calgary and Rothamsted Research (UK), have provided a new strategy to enhance grain yield in rice by increasing grain size and weight. The research results have been published in The Plant Journal and an international patent has been filed (Patent Application No. WO 2019/104509).

In this technology, the research group led by Professor Chye has identified a protein, ACYL-COA-BINDING PROTEIN2 (OsACBP2) from rice (Oryza sativa), that when overexpressed in transgenic rice, will enhance grain size and weight by 10% and elevate grain yield (Image 1). The biomass of the OsACBP2-overexpressing transgenic rice grains exceeded the control by over 10%. OsACBP2 is a lipid-binding protein that binds lipids such as acyl-CoA esters, the major precursors in seed oil production. Oil was observed to accumulate in the transgenic rice grains (Image 2). OsACBP2 is promising not only in enhancing grain size and weight, but also in improving nutritional value with a 10% increase in lipid content of rice bran and whole seeds (Image 3).

As OsACBP2 contributes to boosting oil content as well as size and weight in transgenic rice grains, an application of this technology in rice is expected to benefit agriculture by increasing grain yield and composition to satisfy the need for more food. Professor Chye said: "Increasing grain size and yield, besides rice bran and seed lipid content, in crops such as rice is an important research area that aligns with the aspirations of Dr Wilson and Mrs Amelia Wong on the use of plant biotechnology for a sustainable future. Furthermore, as rice bran oil is considered highly valuable because it contains bioactive components that have been reported to lower serum cholesterol and possess anti-oxidation, anti-carcinogenic and anti-allergic inflammation activities, this technology, if applied to other food crops, would not only help address food security but also elevate nutritional properties in grains."
-end-
This research project was funded by the Research Grants Council of the Hong Kong and the Wilson and Amelia Wong Endowment Fund.

The paper: 'The overexpression of rice ACYL-CoA-BINDING PROTEIN2 increases grain size and bran oil content in transgenic rice' by Zehua Guo, Richard P Haslam, Louise V Michaelson, Edward C Yeung, Shiu-Cheung Lung, Johnathan A Napier, Mee-Len Chye in The Plant Journal. Link to journal paper: https://doi.org/10.1111/tpj.14503

The University of Hong Kong

Related Protein Articles from Brightsurf:

The protein dress of a neuron
New method marks proteins and reveals the receptors in which neurons are dressed

Memory protein
When UC Santa Barbara materials scientist Omar Saleh and graduate student Ian Morgan sought to understand the mechanical behaviors of disordered proteins in the lab, they expected that after being stretched, one particular model protein would snap back instantaneously, like a rubber band.

Diets high in protein, particularly plant protein, linked to lower risk of death
Diets high in protein, particularly plant protein, are associated with a lower risk of death from any cause, finds an analysis of the latest evidence published by The BMJ today.

A new understanding of protein movement
A team of UD engineers has uncovered the role of surface diffusion in protein transport, which could aid biopharmaceutical processing.

A new biotinylation enzyme for analyzing protein-protein interactions
Proteins play roles by interacting with various other proteins. Therefore, interaction analysis is an indispensable technique for studying the function of proteins.

Substituting the next-best protein
Children born with Duchenne muscular dystrophy have a mutation in the X-chromosome gene that would normally code for dystrophin, a protein that provides structural integrity to skeletal muscles.

A direct protein-to-protein binding couples cell survival to cell proliferation
The regulators of apoptosis watch over cell replication and the decision to enter the cell cycle.

A protein that controls inflammation
A study by the research team of Prof. Geert van Loo (VIB-UGent Center for Inflammation Research) has unraveled a critical molecular mechanism behind autoimmune and inflammatory diseases such as rheumatoid arthritis, Crohn's disease, and psoriasis.

Resurrecting ancient protein partners reveals origin of protein regulation
After reconstructing the ancient forms of two cellular proteins, scientists discovered the earliest known instance of a complex form of protein regulation.

Sensing protein wellbeing
The folding state of the proteins in live cells often reflect the cell's general health.

Read More: Protein News and Protein Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.