Bern and Fribourg researchers identify neurons responsible for rapid eye movements/REM during sleep

December 20, 2019

REM - Rapid Eye Movement - is not only the name of a successful American rock band, but also and not least a characteristic eye movement in paradoxical sleep, so in the stage with high dream activity. This sleep phase has a peculiarity: Although the muscle tone of the sleeping person completely relaxed, the eyes suddenly move back and forth. The name "paradoxical sleep" is well deserved. Characteristic of these are signs of deep sleep (muscle atony) in connection with a brain activity, which is very similar to those in the waking state, and eye movements. This sleep phase was discovered in the 1950s by French and American researchers and consequently called rapid eye movement sleep (REM sleep), i.e. sleep with rapid eye movements. Why can this strange phenomenon be useful? For 70 years, scientists have been dreaming of getting to the bottom of the mystery. Thanks to the productive cooperation between the universities of Bern and Fribourg, this dream could now come true.

Butterfly wings arranged neurons

For several years, the team led by Franck Girard and Marco Celio at the University of Freiburg has studied neurons under the microscope, which occur in the brain stem and form a structure that is reminiscent of butterfly wings, which is why she was baptized Nucleus papilio. "These neurons are associated with multiple nerve centers, especially those responsible for eye movement, and those involved in sleep control," explains Franck Girard. "Therefore, we asked ourselves the following question: may the nucleus papilio neurons play a role in the control of eye movements during sleep?"

Stronger together

To test this hypothesis, the Freiburg researchers turned to the research group headed by Dr. C. Gutiérrez Herrera and Prof. A. Adamantidis at the Department of Neurology at the Inselspital, University Hospital Bern, and Department for BioMedical Research of the University of Bern, who are investigating sleep in mice. "To our surprise, we found that these neurons are particularly active in the phase of paradoxical sleep," reports Dr. Carolina Gutierrez. The researchers from Bern gathered the loop around the nucleus papilio neurons even more closely and were able to demonstrate with the help of optogenetic methods (combined optical and genetic techniques) that their artificial activation causes rapid eye movement, especially during this sleep phase. Conversely, the inhibition or elimination of these same neurons blocks the movement of the eyes.

After the "how" the "why"!

Now that it is clear that the nucleus papilio neurons play an important role in eye movement during REM sleep, it is important to find out what function this phenomenon has. Is it due to the visual experience of dreams? Does it matter in preserving memories? "Now that we are able to specifically activate the nucleus papilio 'on demand' in mice by optogenetic methods, we may be able to find answers to these questions," says Antoine Adamantidis. The next step, however, will be to confirm the activation of nucleus papilio neurons during REM sleep in humans. The researchers have not yet found the key to their dreams, but they've come a long way.

A better understanding of the neural circuits involved in paradoxical sleep is therefore a prerequisite for understanding for instance how these neurons are prone to degenerative changes in diseases such as Parkinson's.

University of Bern

Related Neurons Articles from Brightsurf:

Paying attention to the neurons behind our alertness
The neurons of layer 6 - the deepest layer of the cortex - were examined by researchers from the Okinawa Institute of Science and Technology Graduate University to uncover how they react to sensory stimulation in different behavioral states.

Trying to listen to the signal from neurons
Toyohashi University of Technology has developed a coaxial cable-inspired needle-electrode.

A mechanical way to stimulate neurons
Magnetic nanodiscs can be activated by an external magnetic field, providing a research tool for studying neural responses.

Extraordinary regeneration of neurons in zebrafish
Biologists from the University of Bayreuth have discovered a uniquely rapid form of regeneration in injured neurons and their function in the central nervous system of zebrafish.

Dopamine neurons mull over your options
Researchers at the University of Tsukuba have found that dopamine neurons in the brain can represent the decision-making process when making economic choices.

Neurons thrive even when malnourished
When animal, insect or human embryos grow in a malnourished environment, their developing nervous systems get first pick of any available nutrients so that new neurons can be made.

The first 3D map of the heart's neurons
An interdisciplinary research team establishes a new technological pipeline to build a 3D map of the neurons in the heart, revealing foundational insight into their role in heart attacks and other cardiac conditions.

Mapping the neurons of the rat heart in 3D
A team of researchers has developed a virtual 3D heart, digitally showcasing the heart's unique network of neurons for the first time.

How to put neurons into cages
Football-shaped microscale cages have been created using special laser technologies.

A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.

Read More: Neurons News and Neurons Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to