Telomere research at Marshall published in Nature Communications

December 20, 2019

HUNTINGTON, W.Va. - Findings from a recent research project, conducted by a Marshall University scientist and assistant professor in the Marshall University College of Science, with researchers in Texas, was recently published in the December issue of the prestigious online journal, Nature Communications.

Dr. Eugene Shakirov is studying the connection between ribosomes and telomeres in plants. Telomeres are the physical ends of chromosomes and they shorten with age in most cells. Accelerated shortening of telomeres is linked to age-related diseases and overly long telomeres are often linked to cancer.

Telomere length varies between individuals at birth and is known to predetermine cellular lifespan, but the genes establishing telomere length variations are largely unknown. The research being done by Shakirov, along with collaborators at the University of Texas at Austin, Texas A&M University, HudsonAlpha Institute for Biology and the Kazan Federal University in Russia focused on the study of the genetic and epigenetic causes of natural telomere length variation in Arabidopsis thaliana, a small flowering plant

To find those genes that establish telomere length variations, Shakirov used the plant to look further into which genes cause the variations of the telomeres. Using genomic and genetic tests, the research team identified three genes in plants, NOP2A, RPL5A and RPL5B, as being important for telomere length control. Those same genes also play important roles in cellular processes and ribosome biogenesis and show that the identified genes perform multiple tasks in plant cells and tie together two seemingly different, but equally important, processes: the telomere length control and ribosome biology.

Shakirov says the new findings show a clear genetic link between components of ribosome biogenesis pathway and telomere length, mapping a new direction for understanding and potentially treating human diseases caused by mutations in genes that control both the ribosome and telomere.

"We need to fully understand the role of plant and human NOP2 and RPL5 genes in telomere length control and ribosome biology, so in the future we'll run detailed molecular analysis on these genes." Shakirov said. "Some of the lessons we learn from plant telomere proteins may provide new avenues for identification and treatment for human diseases."
Shakirov's study in Nature Communications can be found at the link below.

The research is supported by the National Institutes of Health grant RO1 GM 127402.

Marshall University Joan C. Edwards School of Medicine

Related Telomeres Articles from Brightsurf:

Born to be young?
The environment we experience in early-life is known to have major consequences on later-life health and lifespan.

Scientists home in on the mechanism that protects cells from premature aging
A new study by EPFL researchers shows how RNA species called TERRA muster at the tip of chromosomes, where they help to prevent telomere shortening and premature cell aging.

The CNIO discovers that rapamycin has harmful effects when telomeres are short
The CNIO shows that an anti-aging strategy that extends life in normal mice, the treatment with rapamycin, is harmful when mice have short telomeres.

Drinking 1% rather than 2% milk accounts for 4.5 years of less aging in adults
A new study shows drinking low-fat milk -- both nonfat and 1% milk -- is significantly associated with less aging in adults.

Crick researchers unravel protective properties of telomere t-loops
Loops at the ends of telomeres play a vital protective role preventing irretrievable damage to chromosomes, according to new research from the Crick.

CNIO researchers obtain the first mice born with hyper-long telomeres
Mice with hyper-long telomeres live, on average, 13% longer and in better health, free from cancer and obesity The study has found for the first time ever a clear relationship between the length of telomeres and insulin and glucose metabolism, which are also crucial in ageing 'This finding opens the interesting hypothesis that genes are not the only thing to consider when it comes to determine species longevity,' indicates Maria Blasco, senior author of the paper.

Gene coding error found in rare, inherited gene cof lung-scarring disorder linked to short telomeres
By combing through the entire genetic sequences of a person with a lung scarring disease and 13 of the person's relatives, Johns Hopkins Medicine researchers say they have found a coding error in a single gene that is likely responsible for a rare form of the disease and the abnormally short protective DNA caps on chromosomes long associated with it.

A single change at telomeres controls the ability of cells to generate a complete organism
Pluripotent cells can give rise to all cells of the body, a power that researchers are eager to control because it opens the door to regenerative medicine and organ culture for transplants.

Cold-parenting linked to premature aging, increased disease risk in offspring
New research out of Loma Linda University Health suggests that unsupportive parenting styles may have several negative health implications for children, even into their adult years.

Pitt study finds direct oxidative stress damage shortens telomeres
First causal evidence that oxidative stress works directly on telomeres to speed cellular aging.

Read More: Telomeres News and Telomeres Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to