Nav: Home

Counting photons is now routine enough to need standards

December 20, 2019

Since the National Institute of Standards and Technology (NIST) built its first superconducting devices for counting photons (the smallest units of light) in the 1990s, these once-rare detectors have become popular research tools all over the world. Now, NIST has taken a step toward enabling universal standards for these devices, which are becoming increasingly important in science and industry.

Single-photon detectors (SPDs) are now key to research areas ranging from optical communications and astrophysics to cutting-edge information technologies based on quantum physics, such as quantum cryptography and quantum teleportation.

To ensure their accuracy and reliability, SPDs need to be evaluated and compared to some benchmark, ideally a formal standard. NIST researchers are developing methods to do that and have already started to perform custom calibrations for the handful of companies that make SPDs.

The NIST team has just published methods for measuring the efficiency of five SPDs, including one made at NIST, as a prelude to offering an official calibration service.

"This is a first step towards implementation of a quantum standard -- we produced a tool to verify a future single-photon detection standard," NIST physicist Thomas Gerrits said. "There is no standard right now, but many national metrology institutes, including NIST, are working on this."

"There have been journal papers on this topic before, but we did in-depth uncertainty analyses and described in great detail how we did the tests," Gerrits said. "The aim is to serve as a reference for our planned calibration service."

NIST is uniquely qualified to develop these evaluation methods because the institute makes the most efficient SPDs in the world and is constantly improving their performance. NIST specializes in two superconducting designs -- one based on nanowires or nanostrips, evaluated in the new study, and transition-edge sensors, to be studied in the near future. Future work may also address standards for detectors that measure very low light levels but can't count the number of photons.

In the modern metric system, known as the SI, the basic unit of measurement that's most closely related to photon detection is the candela, which is relevant to light detected by the human eye. Future SI redefinitions might include photon-counting standards, which could offer a more accurate way of measuring light in terms of the candela. Single-photon light levels are less than one-billionth of the amounts in current standards.

The new paper details NIST's use of conventional technologies to measure SPD detection efficiency, defined as the probability of detecting a photon hitting the detector and producing a measurable outcome. The NIST team ensured the measurements are traceable to a primary standard for optical power meters (NIST's Laser Optimized Cryogenic Radiometer). The meters maintain accuracy as measurements are scaled down to low light levels, with the overall measurement uncertainty mostly due to the power meter calibration.

The researchers measured the efficiencies of five detectors, including three silicon photon-counting photodiodes and NIST's nanowire detector. Photons were sent by optical fiber for some measurements and through the air in other cases. Measurements were made for two different wavelengths of light commonly used in fiber optics and communications. Uncertainties ranged from a low of 0.70% for measurements in fiber at a wavelength of 1533.6 nanometers (nm) to 1.78% for over-the-air readings at 851.7 nm.

National Institute of Standards and Technology (NIST)

Related Photons Articles:

Photons and electrons one on one
The dynamics of electrons changes ever so slightly on each interaction with a photon.
An advance in molecular moviemaking shows how molecules respond to two photons of light
Some of the molecules' responses were surprising and others had been seen before with other techniques, but never in such detail or so directly, without relying on advance knowledge of what they should look like.
The imitation game: Scientists describe and emulate new quantum state of entangled photons
A research team from ITMO University, MIPT and Politecnico di Torino, has predicted a novel type of topological quantum state of two photons.
What if we could teach photons to behave like electrons?
The researchers tricked photons - which are intrinsically non-magnetic - into behaving like charged electrons.
Producing single photons from a stream of single electrons
Researchers at the University of Cambridge have developed a novel technique for generating single photons, by moving single electrons in a specially designed light-emitting diode (LED).
Counting photons is now routine enough to need standards
NIST has taken a step toward enabling universal standards for single-photon detectors (SPDs), which are becoming increasingly important in science and industry.
Scientists have found out why photons flying from other galaxies do not reach the Earth
In the Universe there are extragalactic objects such as blazars, which very intensively generate a powerful gamma-ray flux, part of photons from this stream reaches the Earth, as they say, directly, and part -- are converted along the way into electrons, then again converted into photons and only then get to us.
Researchers discover new way to split and sum photons with silicon
A team of researchers at The University of Texas at Austin and the University of California, Riverside have found a way to produce a long-hypothesized phenomenon -- the transfer of energy between silicon and organic, carbon-based molecules -- in a breakthrough that has implications for information storage in quantum computing, solar energy conversion and medical imaging.
Breaking the limits: Discovery of the highest-energy photons from a gamma-ray burst
Gamma-ray bursts (GRBs) are brief and extremely powerful cosmic explosions, suddenly appearing in the sky, about once per day.
Massive photons in an artificial magnetic field
An international research collaboration from Poland, the UK and Russia has created a two-dimensional system -- a thin optical cavity filled with liquid crystal -- in which they trapped photons.
More Photons News and Photons Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at