MGH study identifies new inhibitor of tumor angiogenesis and growth

December 20, 1999

A research team based at the Massachusetts General Hospital (MGH) has shown that a natural factor called thrombospondin-2 (TSP-2) inhibits the development of certain tumors in a mouse model by preventing the development of blood vessels, a process called angiogenesis. TSP-2 now joins a growing list of anti-angiogenesis factors being studied and in some instances tested as possible anti-cancer drugs. The report from the MGH Cutaneous Biology Research Center (CBRC) appears in the Dec. 21 issue of Proceedings of the National Academy of Sciences.

"We have found a natural factor that inhibits angiogenesis in normal tissues and, when reintroduced into tumor cells, stops tumor growth," says Michael Detmar, MD, who led the study. Detmar notes that some of the other anti-angiogenesis factors currently being studied do not appear to be involved in normal blood vessel development but instead are produced when other substances in the body break down. "We believe that TSP-2 is part of a natural protein system designed to prevent the development of malignant tumors," he adds.

TSP-2 is one of a group of proteins that help regulate the proliferation and development of several types of cells. It is structurally similar to thrombospondin-1 (TSP-1), a known angiogenesis inhibitor. Although the two proteins are produced at different times during development and in different tissues, both appear at high levels in developing blood vessels, suggesting an important role in the regulation of angiogenesis. While TSP-1 had previously been shown to inhibit angiogenesis and tumor growth, TSP-2's exact biological role had been unclear. The current study not only verifies TSP-2's activity in suppressing tumor growth and angiogenesis, it also shows that expression of both proteins completely stopped growth of the tumors studied in this project.

The researchers introduced TSP-2 DNA into cultured cells from human squamous cell carcinomas - tumors that do not normally produce TSP-2 - and injected the cells into the skin of immune deficient mice. As a control, another group of mice received injections of unaltered human squamous cell carcinoma cells. While the unaltered cells quickly grew into tumors, tumors from the cells induced to produce TSP-2 grew very slowly and also showed reduced angiogenesis.

The suppression of tumor growth resulting from TSP-2 production was significantly greater than that seen in earlier studies of the effect of TSP-1 production - 90 percent reduction in tumor growth versus 40 to 50 percent. In addition, squamous cell carcinoma cells into which genes for both TSP-2 and TSP-1 were introduced completely failed to develop into tumors.

While they are encouraged by the study results, the researchers stress that many questions need to be answered about TSP-2's possible role as a cancer-fighting agent. Among these are exactly how the protein operates on a molecular level and whether the same anti-tumor effect is seen with other types of cancer. The researchers already have found a similar effect in human malignant melanoma. Also required are practical methods of inducing TSP-2 production in tumor cells. Possible strategies may include gene therapy approaches, introduction of small molecules that stimulate secretion of TSP-2, or bio-engineered implants that could deliver the protein to the area of a tumor.

Supporters of this study include the National Cancer Institute, the National Institutes of Health and the American Cancer Society. The study's co-authors are first author Michael Streit, MD, Lucia Riccardi, Paula Velasco, and Thomas Hawinghorst, MD, of the MGH CBRC; Lawrence Brown, MD, of Beth Israel Deaconess Medical Center; and Paul Bornstein, MD, of the University of Washington in Seattle.

Massachusetts General Hospital

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to