Anti-electrons help researchers find nano-surface defects in gold

December 20, 1999

OAK RIDGE, Tenn., Dec. 21, 1999 -- Tiny defects in the surface of common material - from silicon to steel -- determine the properties of material and how it can be used. Unfortunately, many of these pores, called vacancies, are so small they cannot be accurately measured.

In the past, measurement of vacancies has seriously limited the development of new or improved materials, such as the next generation of optical and electronic devices. This has been especially significant when the vacancies are in devices that are only a few nanometers (one millionth of a millimeter) in size.

Today an international team of researchers at the Department of Energy's Oak Ridge National Laboratory (ORNL) is applying the use of positrons, or anti-electrons, to this task with considerable success.

In a paper published in the November 29th issue of Physical Review Letters, a team from ORNL; Lucent Technologies, Inc.; Fisk University; and Japan's Electrotechnical Laboratory document an experiment using positrons to find clusters of four atomic vacancies at the surface of gold nanoparticles embedded in a magnesia matrix. These clusters of vacancies explain changes in the optical properties when the materials are subjected to different fabrication processes.

Positrons were generated by smashing gamma rays against a tungsten target at the laboratory's Oak Ridge Electron Linear Accelerator. The gamma rays divide into negatively charged electrons and their anti-matter, positrons. The decay of unstable sodium 22 provided an alternative source of positrons. The positrons are injected into the gold nano-particles, and through advanced spectroscopy, the researchers are able to determine the size, location, and concentration of the vacancy clusters.

Nanoscale science and technology is an area of interest in the Office of Science at the Department of Energy, which supported the project. Possible future applications for this work include higher speed computer chips, manipulating properties of optical devices, less brittle ceramic material, and improved fiber composite materials.

The work was done under the leadership of physicist Dr. Jun Xu of ORNL's Chemical and Analytical Sciences Division.

Oak Ridge National Laboratory is a multiprogram research facility of the Department of Energy managed by Lockheed Martin Energy Research Corporation.
-end-


DOE/Oak Ridge National Laboratory

Related Energy Articles from Brightsurf:

Energy System 2050: solutions for the energy transition
To contribute to global climate protection, Germany has to rapidly and comprehensively minimize the use of fossil energy sources and to transform the energy system accordingly.

Cellular energy audit reveals energy producers and consumers
Researchers at Gladstone Institutes have performed a massive and detailed cellular energy audit; they analyzed every gene in the human genome to identify those that drive energy production or energy consumption.

First measurement of electron energy distributions, could enable sustainable energy technologies
To answer a question crucial to technologies such as energy conversion, a team of researchers at the University of Michigan, Purdue University and the University of Liverpool in the UK have figured out a way to measure how many 'hot charge carriers' -- for example, electrons with extra energy -- are present in a metal nanostructure.

Mandatory building energy audits alone do not overcome barriers to energy efficiency
A pioneering law may be insufficient to incentivize significant energy use reductions in residential and office buildings, a new study finds.

Scientists: Estonia has the most energy efficient new nearly zero energy buildings
A recent study carried out by an international group of building scientists showed that Estonia is among the countries with the most energy efficient buildings in Europe.

Mapping the energy transport mechanism of chalcogenide perovskite for solar energy use
Researchers from Lehigh University have, for the first time, revealed first-hand knowledge about the fundamental energy carrier properties of chalcogenide perovskite CaZrSe3, important for potential solar energy use.

Harvesting energy from walking human body Lightweight smart materials-based energy harvester develop
A research team led by Professor Wei-Hsin Liao from the Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong (CUHK) has developed a lightweight smart materials-based energy harvester for scavenging energy from human motion, generating inexhaustible and sustainable power supply just from walking.

How much energy do we really need?
Two fundamental goals of humanity are to eradicate poverty and reduce climate change, and it is critical that the world knows whether achieving these goals will involve trade-offs.

New discipline proposed: Macro-energy systems -- the science of the energy transition
In a perspective published in Joule on Aug. 14, a group of researchers led by Stanford University propose a new academic discipline, 'macro-energy systems,' as the science of the energy transition.

How much energy storage costs must fall to reach renewable energy's full potential
The cost of energy storage will be critical in determining how much renewable energy can contribute to the decarbonization of electricity.

Read More: Energy News and Energy Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.