New technique provides insights into gene regulation

December 21, 2004

Researchers at the University of Toronto have developed a new technique that enables them to examine the genetic material of cells in greater detail than ever before, a finding that could lead to better ways to study and diagnose diseases.

The U of T research is published in the Dec. 22 issue of Molecular Cell. The new technique developed by the investigators uses a modified type of "gene chip" and a computer program to accurately monitor alternative splicing, a cellular process through which basic genetic material becomes more complex and acquires the ability to control genetic messages (mRNAs) that are required for the development of complex organisms.

"Now that we can look at mRNA in more detail, it has opened the door to understanding more about some diseases," explains lead investigator Professor Benjamin Blencowe of U of T's Banting and Best Department of Medical Research (BBDMR) and the Department of Medical Genetics and Microbiology, who notes out-of-control RNA splicing is involved in many human diseases, including cancers and birth defects. "The new information we can now obtain could also provide insights into new treatments."

Each cell in the human body contains about 25,000 genes. Although human tissues and organs all have the same genes, some of the genes are "turned on" and others "off". The complete set of genes in humans is only several times that of budding yeast and close to the number found in the significantly less complex nematode worm, C.elegans, a microscopic ringworm.

How very different organisms develop from comparable numbers and types of genes has been a major question since the genetic similarity was discovered. Scientists are trying to understand what turns a gene "off" or "on", or alters its activity when "on" - in other words, the process of gene regulation.

The answer may lie in the coding segments (exons) of human genes, which are separated by long, non-coding segments (introns). The exons can be spliced in different combinations to generate different genetic messages, or mRNAs, and corresponding protein products. This process, known as alternative splicing, is analogous to the editing of a film sequence, where different combinations of editing can lead to different messages being created.

Presently scientists rely on DNA microarrays, also know as gene chips, to measure the levels of mRNAs. An array is an orderly arrangement of samples of DNA. An experiment with a single DNA microarray can provide researchers information on thousands of genes simultaneously - a dramatic increase in throughput from the era when only one gene could be studied at a time.

The new system developed by the U of T team enables accurate measurements of the levels of individual exons that make up different mRNAs to be attained, which current gene chips are unable to do. These differences found in the individual exons may account for how very similar genetic material can result in marked differences between organisms.

Blencowe developed the system in collaboration with U of T professors Brendan Frey of the Department of Electrical and Computer Engineering and Timothy Hughes of the BBDMR and the Department of Medical Genetics and Microbiology. The research team also included Quaid Morris and Ofer Shai of the Department of Electrical and Computer Engineering and Qun Pan, Christine Misquitta, Wen Zhang, Naveed Mohammad, Tomas Babak, Arneet Saltzman and Henry Siu of the BBDMR.
-end-
Funding for the study was provided by The Canadian Institutes for Health Research, the National Cancer Institute of Canada and the Canadian Foundation for Innovation.

University of Toronto

Related DNA Articles from Brightsurf:

A new twist on DNA origami
A team* of scientists from ASU and Shanghai Jiao Tong University (SJTU) led by Hao Yan, ASU's Milton Glick Professor in the School of Molecular Sciences, and director of the ASU Biodesign Institute's Center for Molecular Design and Biomimetics, has just announced the creation of a new type of meta-DNA structures that will open up the fields of optoelectronics (including information storage and encryption) as well as synthetic biology.

Solving a DNA mystery
''A watched pot never boils,'' as the saying goes, but that was not the case for UC Santa Barbara researchers watching a ''pot'' of liquids formed from DNA.

Junk DNA might be really, really useful for biocomputing
When you don't understand how things work, it's not unusual to think of them as just plain old junk.

Designing DNA from scratch: Engineering the functions of micrometer-sized DNA droplets
Scientists at Tokyo Institute of Technology (Tokyo Tech) have constructed ''DNA droplets'' comprising designed DNA nanostructures.

Does DNA in the water tell us how many fish are there?
Researchers have developed a new non-invasive method to count individual fish by measuring the concentration of environmental DNA in the water, which could be applied for quantitative monitoring of aquatic ecosystems.

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.

Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.

DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.

A new spin on DNA
For decades, researchers have chased ways to study biological machines.

From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.

Read More: DNA News and DNA Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.