Nanotubes form along atomic steps

December 21, 2004

The Weizmann Institute of Science today announced that a research group headed by Dr. Ernesto Joselevich has developed a new approach to create patterns of carbon nanotubes by formation along atomic steps on sapphire surfaces. Carbon nanotubes are excellent candidates for the production of nanoelectronic circuits, but their assembly into ordered arrays remains a major obstacle toward this application.

The team was initially researching in a different direction: they were trying to give carbon nanotubes (structures reminiscent of rolled-up sheets of graphite) a preferred orientation on a wafer by applying an electrical field as the tubes were being formed. This works very well with silicon dioxide wafers. On a sapphire support (sapphire is a form of aluminum oxide), on the other hand, it didn't work: the nanotubes were beautifully arranged in parallel, but with an orientation that was completely independent of the electrical field - even when no field was applied at all.

Closer examination of the sapphire surface solved the mystery: commercial sapphire wafers are generally not cut exactly along the plane of the crystal. Their surface is thus not completely smooth; instead, it has parallel steps - of atomic dimensions - between the different planes of the crystal. The nanotubes wind up lying along these steps. The researchers explain it like this: the nanotubes form from a catalyst of iron nanoparticles and are attracted to a local field created by the steps. It is clear that these iron particles don't like "climbing stairs;" instead, they "glide" along the inner edge of the step, as though on a track. Thus they remain continuously in contact with two surfaces, rather than just one, which seems to stabilize the catalyst. Just as an airplane leaves behind a condensation trail, the iron particles leave the newly formed nanotubes lying along their "tracks." The nanotubes even follow kinks in the steps, which are caused by defects in the crystal. This results in either straight or zigzag-shaped tubes, which are expected to have particularly interesting electronic properties.

"The orientation and form of the atomic steps on a crystal surface can be controlled by the cutting process, and defects can be created artificially," says Joselevich. "It should thus be possible to produce different nanowire arrangements in a controlled fashion."
-end-
Dr. Joselevich's findings appeared as the cover story of Angewandte Chemie. Dr. Ernesto Joselevich can be reached at ernesto.joselevich@weizmann.ac.il or 972-8-934-2350.

Dr. Joselvich's research is supported by the Asher and Jeannette Alhadeff Research Award, the Ilse Katz Institute for Material Sciences and Magnetic Resonance Research, the Philip M. Klutznick Fund for Research, Sir Harry A.S. Djanogly, CBE, UK and Sylvia and Henry Legrain, Spain. He is the incumbent of the Dr. Victor L. Ehrlich Career Development Chair.

The Weizmann Institute of Science in Rehovot, Israel, is one of the world's top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to 2,500 scientists, students, technicians and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials and developing new strategies for protecting the environment.

American Committee for the Weizmann Institute of Science

Related Carbon Nanotubes Articles from Brightsurf:

How plantains and carbon nanotubes can improve cars
Researchers from the University of Johannesburg have shown that plantain, a starchy type of banana, is a promising renewable source for an emerging type of lighter, rust-free composite materials for the automotive industry.

New production method for carbon nanotubes gets green light
A new method of producing carbon nanotubes -- tiny molecules with incredible physical properties used in touchscreen displays, 5G networks and flexible electronics -- has been given the green light by researchers, meaning work in this crucial field can continue.

Growing carbon nanotubes with the right twist
Researchers synthetize nanotubes with a specific structure expanding previous theories on carbon nanotube growth.

Research shows old newspapers can be used to grow carbon nanotubes
New research has found that old newspaper provide a cheap and green solution for the bulk production of single walled carbon nanotubes.

Clean carbon nanotubes with superb properties
Scientists at Aalto University, Finland, and Nagoya University, Japan, have found a new way to make ultra-clean carbon nanotube transistors with superior semiconducting properties.

Dietary fiber effectively purifies carbon nanotubes
A dietary fiber can help separate out semiconducting carbon nanotubes used for making transistors for flexible electronics.

Why modified carbon nanotubes can help the reproducibility problem
Scientists at Tokyo Institute of Technology (Tokyo Tech) conducted an in-depth study on how carbon nanotubes with oxygen-containing groups can be used to greatly enhance the performance of perovskite solar cells.

Tensile strength of carbon nanotubes depends on their chiral structures
Single-walled carbon nanotubes should theoretically be extremely strong, but it remains unclear why their experimental tensile strengths are lower and vary among nanotubes.

New study reveals carbon nanotubes measurement possible for the first time
Swansea University scientists report an entirely new approach to manipulation of carbon nanotubes that allows physical measurements to be made on carbon nanotubes that have previously only been possible by theoretical computation.

Neural networks will help manufacture carbon nanotubes
A team of scientists from Skoltech's Laboratory of Nanomaterials proposed a neural-network-based method for monitoring the growth of carbon nanotubes, preparing the ground for a new generation of sophisticated electronic devices.

Read More: Carbon Nanotubes News and Carbon Nanotubes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.