Einstein was right (again): Experiments confirm that E= mc2

December 21, 2005

Albert Einstein was correct in his prediction that E=mc2, according to scientists at the Massachusetts Institute of Technology (MIT), the Commerce Department's National Institute of Standards and Technology (NIST), and the Institute Laue Langevin, Genoble, France (ILL) who conducted the most precise direct test ever of what is perhaps the most famous formula in science.

In experiments described in the Dec. 22, 2005, issue of Nature,* the researchers added to a catalog of confirmations that matter and energy are related in a precise way. Specifically, energy (E) equals mass (m) times the square of the speed of light (c2), a prediction of Einstein's theory of special relativity. By comparing NIST/ILL measurements of energy emitted by silicon and sulfur atoms and MIT measurements of the mass of the same atoms, the scientists found that E differs from mc2 by at most 0.0000004, or four-tenths of 1 part in 1 million. This result is "consistent with equality" and is 55 times more accurate than the previous best direct test of Einstein's formula, according to the paper.

Such tests are important because special relativity is a central principle of modern physics and the basis for many scientific experiments as well as common instruments like the global positioning system. Other researchers have performed more complicated tests of special relativity that imply closer agreement between E and mc2 than the MIT/NIST/ILL work, but additional assumptions are required to interpret their results, making these previous tests arguably less direct.

The Nature paper describes two very different precision measurements, one done at MIT by a group led by David Pritchard and another done at the ILL by a NIST/ILL collaboration led by the late physicist Richard Deslattes (NIST) and Hans Börner (ILL). Deslattes and his collaborators developed methods for using optical and X-ray interferometry-the study of interference patterns created by electromagnetic waves-to precisely determine the spacing of atoms in a silicon crystal, and for using such calibrated crystals to measure and establish more accurate standards for the very short wavelengths characteristic of highly energetic X-ray and gamma ray radiation. Börner and his collaborators were responsible for a highly successful gamma-ray measurement program at the ILL.

According to the basic laws of physics, every wavelength of electromagnetic radiation corresponds to a specific amount of energy. The NIST/ILL team determined the value for energy in the Einstein equation, E = mc2, by carefully measuring the wavelength of gamma rays emitted by silicon and sulfur atoms.

"This was Dick's original vision, that a comparison like this would someday be made," said Scott Dewey, a NIST physicist who is a co-author of the Nature paper. "The idea when he started working on silicon was to use it as a yardstick to measure the wavelengths of gamma rays, and use this in a test of special relativity. It took 30 years to realize his idea."

The MIT/NIST/ILL tests focused on a well-known process: When the nucleus of an atom captures a neutron, energy is released as gamma ray radiation. The mass of the atom, which now has one extra neutron, is predicted to equal the mass of the original atom, plus the mass of a solitary neutron, minus a value called the neutron binding energy. The neutron binding energy is equal to the energy given off as gamma ray radiation, plus a small amount of energy released in the recoil motion of the nucleus.

The gamma rays in this process have wavelengths of less than a picometer, a million times smaller than visible light, and are diffracted or bent by the atoms in the calibrated crystals at a particular energy-dependent angle. Using a well-known mathematical formula, scientists can combine these angles with values for the crystal lattice spacing to determine the energy contained in individual gamma ray particles.

In the experiments described in Nature, NIST/ILL scientists measured the angle at which gamma rays are diffracted by crystals with known lattice spacings at the ILL high flux reactor. The ILL has the world's premier facility for colliding nuclei and neutrons and capturing the resulting gamma rays at the same instant. Accurate gamma-ray measurements are particularly challenging because the diffraction angles are less than 0.1 degree. The measurements were done using an instrument that was originally designed and built at NIST.

The MIT team measured the mass numbers used in the tests of Einstein's formula by placing two ions (electrically charged atoms) of the same element, one with an extra neutron, in a small electromagnetic trap. Scientists counted the revolutions per second made by each ion around the magnetic field lines within the trap. The difference between these frequencies can be used to determine the masses of the ions. The experiment was performed with both silicon and sulfur ions. The novel two-ion technique virtually eliminates the effect of many sources of "noise," such as magnetic field fluctuations, that reduce measurement accuracy. This work led to greatly improved values for the atomic masses of silicon and sulfur.
The work was supported by NIST and the National Science Foundation.

As a non-regulatory agency of the Commerce Department's Technology Administration, NIST promotes U.S. innovation and industrial competitiveness by advancing measurement science, standards and technology in ways that enhance economic security and improve our quality of life.

* S. Rainville, J.K. Thompson, E.G. Myers, J.M. Brown, M.S. Dewey, E.G. Kessler Jr., R.D. Deslattes, H.G. Börner, M. Jentschel, P. Mutti, D.E. Pritchard. 2005. A direct test of E = mc2. Nature. Dec. 22, 2005.

National Institute of Standards and Technology (NIST)

Related Gamma Rays Articles from Brightsurf:

Properties of catalysts studied with gamma ray resonance
Steam-assisted oil extraction methods for heavy deposits have long been the focus of attention at Kazan Federal University.

Strange gamma-ray heartbeat puzzles scientists
Scientists have detected a mysterious gamma-ray heartbeat coming from a cosmic gas cloud.

Physicists find ways to control gamma radiation
Researchers from Kazan Federal University, Texas A&M University and Institute of Applied Physics (Russian Academy of Sciences) found ways to direct high frequency gamma radiation by means of acoustics.

Excess neutrinos and missing gamma rays?
A new model points to the coronoe of supermassive black holes at the cores of active galaxies to help explain the excess neutrinos observed by the IceCube Neutrino Observatory.

APS tip sheet: correlating matter's distribution in the universe with gamma rays
Scientists present the first direct cross-correlation between dark matter and gamma ray emissions.

APS tip sheet: High energy gamma rays
Nine Galactic sources are the highest-energy gamma -ray sources ever detected, which could suggest the presence of Galactic accelerators.

First detection of gamma-ray burst afterglow in very-high-energy gamma light
An international team of researchers observe a gamma-ray burst, an extremely energetic flash following a cosmological cataclysm, emitting very-high-energy gamma-rays long after the initial explosion.

Gamma-ray bursts with record energy
The strongest explosions in the universe produce even more energetic radiation than previously known: Using specialised telescopes, two international teams have registered the highest energy gamma rays ever measured from so-called gamma-ray bursts, reaching about 100 billion times as much energy as visible light.

Hubble studies gamma-ray burst with highest energy ever seen
NASA's Hubble Space Telescope has given astronomers a peek at the location of the most energetic outburst ever seen in the universe -- a blast of gamma-rays a trillion times more powerful than visible light.

The highest energy gamma rays discovered by the Tibet ASgamma experiment
The Tibet ASgamma experiment, a China-Japan joint research project, has discovered the highest energy cosmic gamma rays ever observed from an astrophysical source - in this case, the 'Crab Nebula.' The experiment detected gamma rays ranging from > 100 Teraelectron volts (TeV) to an estimated 450 TeV.

Read More: Gamma Rays News and Gamma Rays Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.