Astronomers use laser to take clearest images of the center of the Milky Way

December 21, 2005

UCLA astronomers and colleagues have taken the first clear picture of the center of our Milky Way galaxy, including the area surrounding the supermassive black hole, using a new laser virtual star at the W.M. Keck observatory in Hawaii.

"Everything is much clearer now," said Andrea Ghez, UCLA professor of physics and astronomy, who headed the research team. "We used a laser to improve the telescope's vision -- a spectacular breakthrough that will help us understand the black hole's environment and physics. It's like getting Lasik surgery for the eyes, and will revolutionize what we can do in astronomy."

Astronomers are used to working with images that are blurred by the Earth's atmosphere. However, a laser virtual star, launched from the Keck telescope, can be used to correct the atmosphere's distortions and clear up the picture. This new technology, called Laser Guide Star adaptive optics, will lead to important advances for the study of planets in our solar system and outside of our solar system, as well as galaxies, black holes, and how the universe formed and evolved, Ghez said.

"We have worked for years on techniques for 'beating the distortions in the atmosphere' and producing high-resolution images," she said. "We are pleased to report the first Laser Guide Star adaptive optics observations of the center of our galaxy."

Ghez and her colleagues took "snapshots" of the center of the galaxy, targeting the supermassive black hole 26,000 light years away, at different wavelengths. This approach allowed them to study the infrared light emanating from very hot material just outside the black hole's "event horizon," about to be pulled through.

"We are learning the conditions of the infalling material and whether this plays a role in the growth of the supermassive black hole," Ghez said. "The infrared light varies dramatically from week to week, day to day and even within a single hour."

The research, federally funded by the National Science Foundation, will be published Dec. 20 in the Astrophysical Journal Letters.

The research was conducted using the 10-meter Keck II Telescope, which is the world's first 10-meter telescope with a laser on it. Laser Guide Star allows astronomers to "generate an artificial bright star" exactly where they want it, which reveals the atmosphere's distortions.

Since 1995, Ghez has been using the W.M. Keck Observatory to study the galactic center and the movement of 200 nearby stars.

Black holes are collapsed stars so dense that nothing can escape their gravitational pull, not even light. Black holes cannot be seen directly, but their influence on nearby stars is visible, and provides a signature, Ghez said. The supermassive black hole, with a mass more than 3 million times that of our sun, is in the constellation of Sagittarius. The galactic center is located due south in the summer sky.

The black hole came into existence billions of years ago, perhaps as very massive stars collapsed at the end of their life cycles and coalesced into a single, supermassive object, Ghez said.

Co-authors on the research include UCLA graduate students Seth Hornstein and Jessica Lu; the adaptive optics team at W. M. Keck Observatory: David Le Mignant, Marcos Van Dam and Peter Wizinowich; Antonin Bouchez (formerly with the W. M. Keck Observatory) and Keith Matthews at Caltech; Mark Morris, a UCLA professor of physics and astronomy; and Eric Becklin, a UCLA professor of physics and astronomy.
-end-
Ghez provides more information, and images of the galactic center, at http://www.astro.ucla.edu/research/galcenter/.

University of California - Los Angeles

Related Black Hole Articles from Brightsurf:

Black hole or no black hole: On the outcome of neutron star collisions
A new study lead by GSI scientists and international colleagues investigates black-hole formation in neutron star mergers.

The black hole always chirps twice: New clues deciphering the shape of black holes
A team of gravitational-wave scientists led by the ARC Centre of Excellence for Gravitational Wave Discovery (OzGrav) reveal that when two black holes collide and merge, the remnant black hole 'chirps' not once, but multiple times, emitting gravitational waves--intense ripples in the fabric space and time--that inform us about its shape.

Wobbling shadow of the M87 black hole
New analysis from the Event Horizon Telescope (EHT) Collaboration reveals the behavior of the supermassive black hole in the center of the M87 galaxy across multiple years, indicating the crescent-like shadow feature appears to be wobbling.

How to have a blast like a black hole
Scientists at Osaka University have created magnetized-plasma conditions similar to those near a black hole using very intense laser pulses.

Black hole collision may have exploded with light
Astronomers have seen what appears to the first light ever detected from a black hole merger.

Black hole's heart still beating
The first confirmed heartbeat of a supermassive black hole is still going strong more than ten years after first being observed.

Black hole team discovers path to razor-sharp black hole images
A team of researchers have published new calculations that predict a striking and intricate substructure within black hole images from extreme gravitational light bending.

Planets around a black hole?
Theoreticians in two different fields defied the common knowledge that planets orbit stars like the Sun.

Black hole mergers: Cooking with gas
Gravitational wave detectors are finding black hole mergers in the universe at the rate of one per week.

Going against the flow around a supermassive black hole
At the center of a galaxy called NGC 1068, a supermassive black hole hides within a thick doughnut-shaped cloud of dust and gas.

Read More: Black Hole News and Black Hole Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.