MIT, others ask 'What would E.T. see?'

December 21, 2007

CAMBRIDGE, Mass -- As astronomers become more adept at searching for, and finding, planets orbiting other stars, it's natural to wonder if anybody is looking back. Now, a team of astronomers that includes a professor from MIT has figured out just what those alien eyes might see using technologies being developed by Earth's astronomers.

According to their analysis, among other things E.T. could probably tell that our planet's surface is divided between oceans and continents, and learn a little bit about the dynamics of our weather systems.

"Maybe somebody's looking at us right now, finding out what our rotation rate is -- that is, the length of our day," says Sara Seager, associate professor of physics and the Ellen Swallow Richards Associate Professor of Planetary Sciences at MIT.

Seager, along with Enric Palle and colleagues at the Instituto de Astrofísica de Canarias, in Spain, and Eric Ford (MIT S.B. 1999) of the University of Florida, have done a detailed analysis of what astronomers here and on other worlds could learn about a planet from very distant observations, using telescopes much more powerful than those currently available to Earth's astronomers. Their study, which has just been published online in the Astrophysical Journal, will appear in the journal's print edition in April.

Most of the planets astronomers have discovered beyond the solar system have not actually been seen; rather, they have been indirectly observed by looking at the influence they exert on stars they orbit. But even with the most advanced telescopes planned by Earth's astronomers for use over the next several years, a planet orbiting another star would only appear as a single pixel--that is, a single point of light, with no detail except its brightness and color. By comparison, a simple cellphone camera typically takes pictures with about a million pixels, or one megapixel.

"The goal of [our] project was to see how much information you can extract" from very limited data, Seager says. The team's conclusion: a great deal of information about a planet can be gleaned from that single pixel and the way it changes over time.

The way of analyzing the data that Seager and her co-authors studied would work for any world that has continents and bodies of liquid on its surface plus clouds in its atmosphere, even if those were made of very different materials on an alien world. For example, icy worlds with seas of liquid methane, like Saturn's moon Titan, or very hot worlds with oceans of molten silicate (which is solid rock on Earth), would show up similarly across the vastness of space.

However, the method depends on clouds covering only part of a planet's surface, regardless of what each world is made of. So Titan, covered by perpetual global smog, would not give up the mysteries of its weather or rotation, nor would the hellishly hot Venus, with its complete shroud of clouds.

The key, the astronomers learned after studying data from Earth's weather satellites, is that while clouds vary from day to day, there are overall patterns that stay relatively constant, associated with where arid or rainy landmasses are. Detecting those repeating patterns would allow distant astronomers to figure out the planet's rotation period because a brightening associated with clouds above a particular continent would show up regularly once each "day," whatever the length of that day might be. Once the day's length is determined, then any variations in that period would reveal the changing weather--that is, clouds in a different place than the average.

No telescope now in operation is capable of making the measurements that Seager and her team analyzed. But planned telescopes such as NASA's Kepler, set for launch in 2009, would be able to discover dozens or hundreds of Earth-like worlds. Then even more advanced space observatories being considered, such as NASA's Terrestrial Planet Finder, would allow the follow-up studies to learn about these planets' rotation and weather, and the composition of their atmospheres, Seager says.
-end-
The research was funded in part by a Ramon y Cajal fellowship for Palle and a Hubble Fellowship grant for Ford, and by NASA.

Written by David Chandler, MIT News Office

Massachusetts Institute of Technology

Related Astronomers Articles from Brightsurf:

Astronomers are bulging with data
For the first time, over 250 million stars in our galaxy's bulge have been surveyed in near-ultraviolet, optical, and near-infrared light, opening the door for astronomers to reexamine key questions about the Milky Way's formation and history.

Astronomers capture a pulsar 'powering up'
A Monash-University-led collaboration has, for the first time, observed the full, 12-day process of material spiralling into a distant neutron star, triggering an X-ray outburst thousands of times brighter than our Sun.

Astronomers discover new class of cosmic explosions
Analysis of two cosmic explosions indicates to astronomers that the pair, along with a puzzling blast from 2018, constitute a new type of event, with similarities to some supernovae and gamma-ray bursts, but also with significant differences.

Astronomers discover planet that never was
What was thought to be an exoplanet in a nearby star system likely never existed in the first place, according to University of Arizona astronomers.

Canadian astronomers determine Earth's fingerprint
Two McGill University astronomers have assembled a 'fingerprint' for Earth, which could be used to identify a planet beyond our Solar System capable of supporting life.

Astronomers help wage war on cancer
Techniques developed by astronomers could help in the fight against breast and skin cancer.

Astronomers make history in a split second
In a world first, an Australian-led international team of astronomers has determined the precise location of a powerful one-off burst of cosmic radio waves.

Astronomers witness galaxy megamerger
Using the Atacama Large Millimeter/submillimeter Array (ALMA), an international team of scientists has uncovered a startlingly dense concentration of 14 galaxies that are poised to merge, forming the core of what will eventually become a colossal galaxy cluster.

Astronomers discover a star that would not die
An international team of astronomers has made a bizarre discovery; a star that refuses to stop shining.

Astronomers spun up by galaxy-shape finding
For the first time astronomers have measured how a galaxy's spin affects its shape -- something scientists have tried to do for 90 years -- using a sample of 845 galaxies.

Read More: Astronomers News and Astronomers Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.