Songbirds offer clues to highly practiced motor skills in humans

December 21, 2007

The melodious sound of a songbird may appear effortless, but his elocutions are actually the result of rigorous training undergone in youth and maintained throughout adulthood. His tune has virtually "crystallized" by maturity. The same control is seen in the motor performance of top athletes and musicians. Yet, subtle variations in highly practiced skills persist in both songbirds and humans. Now, scientists think they know why.

Their finding, reported in the current issue of "Nature," suggests that natural variation is a built-in mechanism designed to allow the nervous system to explore various subtle options aimed at maintaining and optimizing motor skills in the face of such variables as aging and injury.

While the study was conducted in the adult male Bengalese Finch, a perky fellow who uses his song to woo females, the finding has implications, the scientists say, for understanding the way in which adult humans perform and retain well-learned motor skills. More broadly, the study provides insights that could inform strategies for rehabilitating patients following strokes and other damage to the nervous system.

"Many neuroscientists have thought that the nervous system simply didn't have the ability to control movement at a highly precise level," says lead author Evren Tumer, PhD, a postdoctoral fellow in the laboratory of senior author Michael Brainard, PhD, UCSF assistant professor of physiology. "After all, we're not machines. But our study suggests that subtle variation can serve a purpose and contribute to the maintenance of motor skills."

"If a golfer had a perfect swing, and all the conditions within him and the external environment were static, this wouldn't be necessary," he says. "But there are always changes - muscles get tired or are fresher, neurons die or change with age. There is always a bit of change somewhere in the system."

"To keep tuned up," says Brainard, "the nervous system constantly needs to experiment, to continually correct for deviations."

The tune of songbirds is a complex skill, produced in highly stereotyped fashion from one rendition to the next. Juveniles learn their song over a period of months, first memorizing their father's tune and then, weeks later, embarking on a period of vocal exploration, in which they initiate their fledgling renditions while comparing them to the memory of their father's tune, laid down in their neural circuitry. This process, using auditory feedback, involves a continuous fine-tuning of the bird's melody, culminating in a stable, nearly "crystallized," song.

Adult songbirds, meanwhile, rely on auditory feedback to maintain their song, and previous studies by Brainard have shown that if the birds are deaf, or receive garbled auditory feedback via a computer-based intervention, the fidelity of their song gradually deteriorates.

Scientists have not known, however, whether modulation in adult birdsong can be driven, in a predictable way, through auditory feedback. In the current study, the team examined this possibility.

They used a computerized system to monitor small natural variations in the pitch of targeted elements of the birds' song, and then delivered disruptive auditory feedback to a subset of the vocalizations, or "syllables." The disruption was in the form of a short burst of white noise - a static "chh!-chh-chh!" sound. Higher pitched renditions received a short burst of white noise, while lower pitched versions were left undisturbed.

The response was nearly immediate. Birds receiving the white noise feedback rapidly shifted the pitch of their vocalizations to avoid the sound. The changes were restricted precisely to the targeted syllable. "It was quite dramatic," says Tumer. "We were able to make the bird sing a particular syllable with a higher pitch."

"This data provides the first evidence that you can take this really stereotyped behavior that people have assumed was crystallized and change it in a predetermined way."

Notably, when the white noise bursts were stopped, the pitch reverted to its original range, indicating that the nervous system retained a representation of the initial song and that there was "some drive to return to it."

The scientists also examined whether more dramatic remodeling of the birds' song was possible. They explored this possibility by creating conditions in which escape from white noise required the birds to make progressively larger shifts in pitch. Under these conditions, the scientists were able to incrementally drive large changes to the point that syllables were produced in a range that did not overlap with the baseline range.

"This showed you can drive really big changes in this normally stereotyped behavior but you have to do it incrementally," says Tumer. "This could have implications for rehabilitation strategies in humans."

In support of the current findings, previous work by Brainard's team and others has revealed that when male songbirds sing alone there is greater variability in their song than when they sing to females.

The theory, says Brainard, is that the birds can afford to experiment, and thus practice their tunes, when the pressure is off. This process, he suggests, is not occurring at a conscious level. Rather, it is likely driven by neurochemicals released under varying circumstances that are then acting on a region of the nervous system known as the basal ganglia, which is critical to song learning and maintenance.

"You could imagine," says Tumer, who is also a member of the Keck Center for Integrative Neuroscience at UCSF, "that when wooing a female bird - or stepping onto the green for the Masters golf tournament -- neuromodulatory systems would be more engaged than if the bird were on a lonely tree branch or the athlete on a sleepy Sunday afternoon round of golf with friends."
-end-
The study was funded by the National Institutes of Health, the Sloan-Swartz Foundation and the McKnight Foundation.

UCSF is a leading university dedicated to defining health worldwide through advanced biomedical research, graduate level education in the life sciences and health professions, and excellence in patient care.

For more information:

Brainard lab:
http://www.neuroscience.ucsf.edu/neurograd/faculty/Brainard.htmlPapers by Michael Brainard alluded to in this news release:

University of California - San Francisco

Related Nervous System Articles from Brightsurf:

Chikungunya may affect central nervous system as well as joints and lungs
Investigation conducted by international group of researchers showed that chikungunya virus can cause neurological infections.

Glial cells play an active role in the nervous system
Researchers at M√ľnster University, Germany, have discovered that glial cells - one of the main components of the brain -not only control the speed of nerve conduction, but also influence the precision of signal transduction in the brain.

Protein produced by the nervous system may help treatments for inflammatory diseases
A Rutgers-led team discover a protein produced by nervous system may be key to treating inflammatory diseases like asthma, allergies, chronic fibrosis and chronic obstructive pulmonary disease (COPD)

COVID-19 may attack patients' central nervous system
''There may be more central nervous system penetration of the virus than we think based on the prevalence of olfaction-associated depressed mood and anxiety and this really opens up doors for future investigations to look at how the virus may interact with the central nervous system,'' explains Ahmad Sedaghat, MD, PhD.

Lifting weights makes your nervous system stronger, too
Gym-goers may get frustrated when they don't see results from weightlifting right away, but their efforts are not in vain: the first few weeks of training strengthen the nervous system, not muscles.

COVID-19 threatens the entire nervous system
A new review of neurological symptoms of COVID-19 patients in current scientific literature reveals the disease poses a global threat to the entire nervous system.

Fewer scars in the central nervous system
Researchers have discovered the influence of the coagulation factor fibrinogen on the damaged brain.

Polymerized estrogen shown to protect nervous system cells
In research published today in Nature Communications, an interdisciplinary team from Rensselaer Polytechnic Institute demonstrated how estrogen -- a natural hormone produced in the body -- can be polymerized into a slow-releasing biomaterial and applied to nervous system cells to protect those cells and even promote regeneration.

Discovery concerning the nervous system overturns a previous theory
It appears that when our nervous system is developing, only the most viable neurons survive, while immature neurons are weeded out and die.

Autonomic nervous system appears to function well regardless of mode of childbirth
'In a low-risk group of babies born full-term, the autonomic nervous system and cortical systems appear to function well regardless of whether infants were exposed to labor prior to birth,' says Sarah B.

Read More: Nervous System News and Nervous System Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.