SPARKy devices helps amputees return to normal lives

December 21, 2009

TEMPE, Ariz. - Arizona State University researchers have developed a prosthetic device that literally puts the spring back into an amputee's step. The ASU scientists have developed and refined SPARKy (for spring ankle with regenerative kinetics) into a smart, active and energy storing below-the-knee (transbitial) prosthesis.

SPARKy is the first prosthetic device to apply regenerative kinetics to its design, which resulted in a lightweight (four pound) device that allows the wearer to walk on grass, cement and rocks, as well as ascend and descend stairs and inclines.

SPARKY operates by employing a spring to store energy as the wearer walks during normal gait, said Thomas Sugar, an ASU associate professor of engineering at the Polytechnic campus who led the research. Sugar and his colleagues -- ASU doctoral students Joseph Hitt and Matthew Holgate, as well as Barrett Honors College student Ryan Bellman -- have been developing and refining SPARKy for three years as part of a U.S. Army grant.

SPARKy uses a robotic tendon to actively stretch springs when the ankle rolls over the foot, thus allowing the springs to thrust or propel the artificial foot forward for the next step. Because energy is stored, a lightweight motor is used to adjust the position of a finely tuned spring that provides most of the power required for gait.

"SPARKY basically removes the old passive devices and makes it an active device the wearer uses to attain normal gait, which for an amputee is a significant return to normal function," Sugar said. SPARKy is not only an active prosthetic device, but it also allows a wider range of movement than previous devices, it weighs less and it causes less fatigue for the wearer.

The device is featured in the January 2010 National Geographic magazine in an article called Merging Man with Machine, the Bionic Age (http://ngm.nationalgeographic.com/2010/01/bionics/thiessen-photography). To see a video of the SPARKy device, go to: http://asunews.asu.edu/20091221_video_SPARKy.

SPARKy provides functionality with enhanced ankle motion and push-off power comparable to the gait of an able bodied individual. Sugar said the device reached its primary goal of returning the functionality of the amputee to his/her status prior to losing a limb.

The device is built to take advantage of the functional mechanics of gait. A gait cycle is the natural motion of walking, starting with the heel strike of one foot and ending with the heel strike of the same foot.

"The cycle can be split into two phases, stance and swing," Sugar said. "We are concerned with storing energy and releasing energy (regenerative kinetics) in the stance phase."

The mechanics of walking can be described as catching a series of falls, Sugar added. In SPARKy, a tuned spring (acting like the Achilles tendon) breaks the fall and stores energy as the leg rolls over the ankle during the stance phase.

While the project is nearing completion of its three year grant, there still is much more work to do to refine the device.

To date, SPARKy has allowed users to walk on inclines, steps and to walk backwards, not trivial tasks for people who have only had access to passive, and sometimes cumbersome, prosthetics. In the future, the team plans to make additional improvements to lower the weight of SPARKy by integrating very fast microprocessors and using the smallest lithium ion batteries.

"We want our finished device to allow soldiers to return to active duty," Sugar said.
-end-
Editors: File footage of the SPARKy device, developed at Arizona State University, is available at: http://asunews.asu.edu/20091221_video_SPARKyfile

Source: Tom Sugar, (480) 727-1127; thomas.sugar@asu.edu

Media contact: Skip Derra, (480) 965-4823; skip.derra@asu.edu

Arizona State University

Related Energy Articles from Brightsurf:

Energy System 2050: solutions for the energy transition
To contribute to global climate protection, Germany has to rapidly and comprehensively minimize the use of fossil energy sources and to transform the energy system accordingly.

Cellular energy audit reveals energy producers and consumers
Researchers at Gladstone Institutes have performed a massive and detailed cellular energy audit; they analyzed every gene in the human genome to identify those that drive energy production or energy consumption.

First measurement of electron energy distributions, could enable sustainable energy technologies
To answer a question crucial to technologies such as energy conversion, a team of researchers at the University of Michigan, Purdue University and the University of Liverpool in the UK have figured out a way to measure how many 'hot charge carriers' -- for example, electrons with extra energy -- are present in a metal nanostructure.

Mandatory building energy audits alone do not overcome barriers to energy efficiency
A pioneering law may be insufficient to incentivize significant energy use reductions in residential and office buildings, a new study finds.

Scientists: Estonia has the most energy efficient new nearly zero energy buildings
A recent study carried out by an international group of building scientists showed that Estonia is among the countries with the most energy efficient buildings in Europe.

Mapping the energy transport mechanism of chalcogenide perovskite for solar energy use
Researchers from Lehigh University have, for the first time, revealed first-hand knowledge about the fundamental energy carrier properties of chalcogenide perovskite CaZrSe3, important for potential solar energy use.

Harvesting energy from walking human body Lightweight smart materials-based energy harvester develop
A research team led by Professor Wei-Hsin Liao from the Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong (CUHK) has developed a lightweight smart materials-based energy harvester for scavenging energy from human motion, generating inexhaustible and sustainable power supply just from walking.

How much energy do we really need?
Two fundamental goals of humanity are to eradicate poverty and reduce climate change, and it is critical that the world knows whether achieving these goals will involve trade-offs.

New discipline proposed: Macro-energy systems -- the science of the energy transition
In a perspective published in Joule on Aug. 14, a group of researchers led by Stanford University propose a new academic discipline, 'macro-energy systems,' as the science of the energy transition.

How much energy storage costs must fall to reach renewable energy's full potential
The cost of energy storage will be critical in determining how much renewable energy can contribute to the decarbonization of electricity.

Read More: Energy News and Energy Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.