Formation of the Gulf of Corinth rift, Greece

December 21, 2009

A study of the structure and evolution of the Gulf of Corinth rift in central Greece will increase scientific understanding of rifted margin development and the tectonic mechanisms underlying seafloor spreading and deformation of the Earth's crust.

"The Gulf of Corinth rift is an ideal natural laboratory for studying early rift history," said Dr Lisa McNeill of the University of Southampton's School of Ocean and Earth Science (SOES) at the National Oceanography Centre, Southampton (NOCS): "The rift is less than five million years old and is relatively easy to interpret as its structure has not been significantly complicated by geological events over a long period of time. The rifting process is also the source of hazardous earthquakes in the region"

Using available marine and terrestrial data, including high-resolution seismic reflection profiles from a research cruise aboard the MV Vasilios in 2003, the researchers analysed fault evolution across the entire rift system, producing a fault framework for the rift and revealing patterns of basin subsidence through rift history. They also estimated when faults became active and the rates at which they slip.

"Our analysis shows how the system of faults associated with the Corinth rift has evolved over time, which can now be compared with other rifts worldwide and with computer models of rift development," said Dr Rebecca Bell, former SOES PhD student at the National Oceanography Centre, now working at GNS Science, New Zealand and lead author of the research.

The Corinth rift is about 100 kilometres long and 30 kilometers wide. It is under high strain, its north and south sides separating due to tectonic forces by up to ~15 milimetres per year.

The researchers find that the rift has undergone major changes in fault activity and the shape of the rift basin during its short history. The currently active Gulf of Corinth Basin is thought to have formed only 1-2 million years ago.

Before around 400,000 years ago, two separate areas of sediment deposition or basins (20-50 kilometres long) were created, controlled by north- and south-dipping faults. Since this time, these basins have coalesced into one (80 kilometres long) controlled by multiple connected faults.

The researchers conclude that isolated but nearby faults can persist for around a million years and form major basins before becoming linked deep below the Earth's surface: "Basin subsidence and the eventual transition to seafloor spreading are controlled by the development and interaction of fault systems established in the early stages of continental rifting."
Images are available from the NOCS Press Office (Tel. 023 8059 6100).

Scientist contact

Dr Lisa McNeill: email; telephone +44 (0) 23 8059 3640


Bell, R. E., McNeill, L. C., Bull, J. M. Henstock, T. J., Collier, R. E. L. & Leeder, M. R. Fault architecture, basin structure and evolution of the Gulf of Corinth Rift, central Greece. Basin Research 21, 824-855 (2009).

The researchers are Rebecca Bell, Lisa McNeill, Jon Bull and Tim Henstock (SOES/NOCS), Richard Collier (University of Leeds) and Mike Leeder (University of East Anglia), with several collaborators from Greece.

The work was funded by the United Kingdom's Natural Environment Research Council, the University of Southampton, and the Royal Society under the permission of the Greek authorities.

The National Oceanography Centre, Southampton is the UK's focus for ocean science. It is one of the world's leading institutions devoted to research, teaching and technology development in ocean and Earth science. Over 500 research scientists, lecturing, support and seagoing staff are based at the centre's purpose-built waterside campus in Southampton along with over 700 undergraduate and postgraduate students.

The National Oceanography Centre, Southampton is a collaboration between the University of Southampton and the Natural Environment Research Council. The NERC royal research ships RRS James Cook and RRS Discovery are based at NOCS as is the National Marine Equipment Pool which includes Autosub and Isis, two of the world's deepest diving research vehicles.

National Oceanography Centre, UK

Related Evolution Articles from Brightsurf:

Seeing evolution happening before your eyes
Researchers from the European Molecular Biology Laboratory in Heidelberg established an automated pipeline to create mutations in genomic enhancers that let them watch evolution unfold before their eyes.

A timeline on the evolution of reptiles
A statistical analysis of that vast database is helping scientists better understand the evolution of these cold-blooded vertebrates by contradicting a widely held theory that major transitions in evolution always happened in big, quick (geologically speaking) bursts, triggered by major environmental shifts.

Looking at evolution's genealogy from home
Evolution leaves its traces in particular in genomes. A team headed by Dr.

How boundaries become bridges in evolution
The mechanisms that make organisms locally fit and those responsible for change are distinct and occur sequentially in evolution.

Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.

Paleontology: Experiments in evolution
A new find from Patagonia sheds light on the evolution of large predatory dinosaurs.

A window into evolution
The C4 cycle supercharges photosynthesis and evolved independently more than 62 times.

Is evolution predictable?
An international team of scientists working with Heliconius butterflies at the Smithsonian Tropical Research Institute (STRI) in Panama was faced with a mystery: how do pairs of unrelated butterflies from Peru to Costa Rica evolve nearly the same wing-color patterns over and over again?

Predicting evolution
A new method of 're-barcoding' DNA allows scientists to track rapid evolution in yeast.

Insect evolution: Insect evolution
Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich have shown that the incidence of midge and fly larvae in amber is far higher than previously thought.

Read More: Evolution News and Evolution Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to