Jefferson Lab laser twinkles in rare color

December 21, 2010

December is a time for twinkling lights, and scientists at the Department of Energy's Thomas Jefferson National Accelerator Facility are delivering. They've just produced a long-sought, rare color of laser light 100 times brighter than that generated anywhere else.

The light was produced by Jefferson Lab's Free-Electron Laser facility. The laser delivered vacuum ultraviolet light in the form of 10 eV photons (a wavelength of 124 nanometers). This color of light is called vacuum ultraviolet because it is absorbed by molecules in the air, requiring its use in a vacuum.

"We have succeeded in delivering 10 eV photons for the first time," says George Neil, Jefferson Lab associate director for the FEL Division. "Using a hole out-coupling mirror on the Jefferson Lab Ultraviolet Demonstration FEL, we delivered vacuum ultraviolet harmonic light to a calibrated VUV photodiode and measured five nanojoules of fully coherent light in each micropulse."

The feat opens the door to many lines of research that were previously inaccessible.

For instance, the FEL may soon enable a method of determining the age of materials that far outstrips carbon dating. Radio-carbon dating allows scientists to estimate the age of some materials up to roughly 62,000 years. But radio-krypton dating could potentially allow scientists to determine the age of materials between 100,000 to 1 million years. The 10 eV light from the FEL would be used to produce so-called metastable krypton atoms for use in this dating method. The method can contribute to ocean circulation models and maps of groundwater movement, as well as dating polar ice.

"This new laser is also a perfect tool to study novel materials with great potential for addressing issues such as energy and the environment," said Gwyn Williams, FEL basic research program manager.

"We still have a lot of work ahead of us before experiments can begin," Williams said. "In the new year, we'll be working to deliver light into a lab for measurement and future experiments. We hope to accomplish those goals by March."
-end-
The Free-Electron Laser program and individual research projects are supported by various organizations. These include the Department of Defense's Office of Naval Research, the Air Force Research Laboratory and the Joint Technology Office, the Commonwealth of Virginia and the Department of Energy's Basic Energy Sciences. Key equipment was provided by the Wisconsin Synchrotron Radiation Center and Cornell University.

DOE/Thomas Jefferson National Accelerator Facility

Related Laser Articles from Brightsurf:

Laser technology: New trick for infrared laser pulses
For a long time, scientists have been looking for simple methods to produce infrared laser pulses.

Sensors get a laser shape up
Laser writing breathes life into high-performance sensing platforms.

Laser-powered nanomotors chart their own course
The University of Tokyo introduced a system of gold nanorods that acts like a tiny light-driven motor, with its direction of motion is determined by the orientation of the motors.

What laser color do you like?
Researchers at the National Institute of Standards and Technology (NIST) and the University of Maryland have developed a microchip technology that can convert invisible near-infrared laser light into any one of a panoply of visible laser colors, including red, orange, yellow and green.

Laser technology: The Turbulence and the Comb
While the light of an ordinary laser only has one single, well-defined wavelength, a so-called ''frequency comb'' consists of different light frequencies, which are precisely arranged at regular distances, much like the teeth of a comb.

A laser for penetrating waves
The 'Landau-level laser' is an exciting concept for an unusual radiation source.

Laser light detects tumors
A team of researchers from Jena presents a groundbreaking new method for the rapid, gentle and reliable detection of tumors with laser light.

The first laser radio transmitter
For the first time, researchers at Harvard School of Engineering have used a laser as a radio transmitter and receiver, paving the way for towards ultra-high-speed Wi-Fi and new types of hybrid electronic-photonic devices.

The random anti-laser
Scientists at TU Wien have found a way to build the 'opposite' of a laser -- a device that absorbs a specific light wave perfectly.

Laser 'drill' sets a new world record in laser-driven electron acceleration
Combining a first laser pulse to heat up and 'drill' through a plasma, and another to accelerate electrons to incredibly high energies in just tens of centimeters, scientists have nearly doubled the previous record for laser-driven particle acceleration at Berkeley Lab's BELLA Center.

Read More: Laser News and Laser Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.