New evidence that bacteria in large intestine have a role in obesity

December 21, 2011

Bacteria living in people's large intestine may slow down the activity of the "good" kind of fat tissue, a special fat that quickly burns calories and may help prevent obesity, scientists are reporting in a new study. The discovery, published in ACS' Journal of Proteome Research, could shed light on ways to prevent obesity and promote weight loss, including possible microbial and pharmaceutical approaches, the authors said.

Sandrine P. Claus, Jeremy K. Nicholson and colleagues explain that trillions of bacteria live in the large intestine of healthy people, where they help digest food and make certain vitamins. In recent years, however, scientists have realized that these bacteria do more -- they interact with the rest of the body in ways that affect the use of energy and its storage as fat and finely tune the immune system. Claus and Nicholson decided to see how intestinal bacteria might affect the activity of brown fat. The "good" fat that burns calories quickly before they can be stored as fat, brown fat exists in small deposits in the neck area and elsewhere -- not like "white fat" in flab around the waist and buttocks. No one had checked to see if those bacteria could have an effect on brown fat, the researchers noted.

In experiments that compared "germ-free" (GF) mice, which don't have large-intestine bacteria, and regular mice, the scientists uncovered evidence suggesting that the bacteria do influence the activity of brown fat. Brown fat in the GF mice seemed to be more active, burning calories faster than in regular mice. Large-intestine bacteria also seemed to be linked with gender differences in weight. Normal male mice were heavier and fattier than females, but those differences vanished in the GF mice. The research also uncovered major differences in the interactions between males and females and their intestinal bacteria that might help explain why the obesity epidemic is more serious and rapidly developing in women. Those and other findings may point the way toward approaches that kick-up the activity of brown fat in humans to prevent or treat obesity.
-end-
The authors acknowledge funding from Nestlé as part of the Imperial College London-Nestlé strategic alliance.

The American Chemical Society is a non-profit organization chartered by the U.S. Congress. With more than 163,000 members, ACS is the world's largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society contact newsroom@acs.org.

American Chemical Society

Related Bacteria Articles from Brightsurf:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.

Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.

Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.

Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.

How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.

The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?

Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.

Read More: Bacteria News and Bacteria Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.