PET technique promises better detection and response assessment for Non-Hodgkin's lymphoma

December 21, 2011

Reston, Va. - Positron emission tomography (PET) and a molecular imaging agent that captures the proliferation of cancer cells could prove to be a valuable method for imaging a form of Non-Hodgkin's disease called mantle cell lymphoma, a relatively rare and devastating blood cancer. The pilot study is published in the December issue of the Journal of Nuclear Medicine.

Lymphoma is the term used for an array of cancers that affect blood cells and the lymphatic system. These cancers are typically categorized as either Hodgkin's or non-Hodgkin's. Mantle cell lymphoma (MCL) is a type of non-Hodgkin's lymphoma that accounts for approximately 6 percent, or roughly 3,000, of lymphoma cases in America, with prevalence in male populations over 60 years of age. MCL is caused by abnormal gene expression of B-cell lymphocytes within the mantle zone of lymph nodes. Normally these cells produce antibodies involved in the body's natural immune response, but in MCL these cells divide uncontrollably and don't terminate as healthy B-cells do.

The imaging agent being evaluated is called 3′-deoxy-3′-[F-18] fluorothymidine, or 18-F FLT. The combination of radionuclide and an analog of thymidine, a naturally occurring chemical compound that helps synchronize cell cycles, could provide a powerful biomarker for MCL.

"The encouraging results of this study should usher in new trials to investigate the role of FLT-PET for therapy response assessment and post-treatment monitoring," said one of the principal scientists, Ulrich Keller. "With further research, FLT-PET could be implemented to provide highly sensitive imaging for patients with MCL."

Researchers evaluated participants of the study using a variety of conventional imaging methods. One week before scheduled treatment with immunochemotherapy patients underwent both FLT-PET and FDG PET/CT, another molecular imaging method that targets the high glucose metabolism of cancer cells. Five of these subjects had FLT-PET imaging performed again an average of about six days after the start of treatment to assess therapy response. Results showed all cancerous lesions found with more conventional imaging methods were very highly visible using FLT-PET. Correlation between areas of intense cancer proliferation and "high spots" of F-18 FLT on PET scans was performed using immunostaining, a technique that involves staining sections of tissues with antibodies in order to detect a particular biochemical process.

"MCL is still considered a non-curable disease, despite major advances in the clinical management of disease, underlining the need for reliable response assessment and post-treatment monitoring," added Keller. "The most widely used PET imaging agents have not yet proven to be beneficial for either one of them, which indicates FLT-PET's potential for MCL imaging."

Further research is expected to be conducted to confirm the efficacy of FLT-PET for initial detection and early response assessment of MCL.
-end-
Authors of the article "A pilot study to evaluate FLT-PET for initial and very early response imaging in MCL" include Ken Hermann, Andreas Buck, Hans-Jürgen Wester, Christine Scheurer, and Markus Schwaiger, Department of Nuclear Medicine; Tibor Schuster, Institute of Medical Statistics and Epidemiology; Martina Rudelius, Institute of Pathology; and Nicolas Graf, Christian Peschel, Tobias Dechow, and Ulrich Keller, Medical Department--all of Technische Universität München, Munich, Germany; and Andreas Buck, Department of Nuclear Medicine, Universitätsklinikum Würzburg, Würzburg, Germany and Department of Nuclear Medicine, Technische Universität München, Munich, Germany.

Please visit the SNM Newsroom to view the PDF of the study, including images, and further reading about molecular imaging and personalized medicine. To schedule an interview with the researchers, please contact Rebecca Maxey at 703-652-6772 or rmaxey@snm.org. Current and past issues of the Journal of Nuclear Medicine can be found online at http://jnm.snmjournals.org.

About SNM--Advancing Molecular Imaging and Therapy

SNM is an international scientific and medical organization dedicated to raising public awareness about what molecular imaging is and how it can help provide patients with the best health care possible. SNM members specialize in molecular imaging, a vital element of today's medical practice that adds an additional dimension to diagnosis, changing the way common and devastating diseases are understood and treated.

SNM's more than 17,000 members set the standard for molecular imaging and nuclear medicine practice by creating guidelines, sharing information through journals and meetings and leading advocacy on key issues that affect molecular imaging and therapy research and practice. For more information, visit http://www.snm.org.

Society of Nuclear Medicine

Related Cancer Cells Articles from Brightsurf:

Cancer researchers train white blood cells to attacks tumor cells
Scientists at the National Center for Tumor Diseases Dresden (NCT/UCC) and Dresden University Medicine, together with an international team of researchers, were able to demonstrate that certain white blood cells, so-called neutrophil granulocytes, can potentially - after completing a special training program -- be utilized for the treatment of tumors.

New way to target some rapidly dividing cancer cells, leaving healthy cells unharmed
Scientists at Johns Hopkins Medicine and the University of Oxford say they have found a new way to kill some multiplying human breast cancer cells by selectively attacking the core of their cell division machinery.

Breast cancer cells use message-carrying vesicles to send oncogenic stimuli to normal cells
According to a Wistar study, breast cancer cells starved for oxygen send out messages that induce oncogenic changes in surrounding normal epithelial cells.

Breast cancer cells turn killer immune cells into allies
Researchers at Johns Hopkins University School of Medicine have discovered that breast cancer cells can alter the function of immune cells known as Natural killer (NK) cells so that instead of killing the cancer cells, they facilitate their spread to other parts of the body.

Breast cancer cells can reprogram immune cells to assist in metastasis
Johns Hopkins Kimmel Cancer Center investigators report they have uncovered a new mechanism by which invasive breast cancer cells evade the immune system to metastasize, or spread, to other areas of the body.

Engineered immune cells recognize, attack human and mouse solid-tumor cancer cells
CAR-T therapy has been used successfully in patients with blood cancers such as lymphoma and leukemia.

Drug that keeps surface receptors on cancer cells makes them more visible to immune cells
A drug that is already clinically available for the treatment of nausea and psychosis, called prochlorperazine (PCZ), inhibits the internalization of receptors on the surface of tumor cells, thereby increasing the ability of anticancer antibodies to bind to the receptors and mount more effective immune responses.

Engineered bone marrow cells slow growth of prostate and pancreatic cancer cells
In experiments with mice, researchers at the Johns Hopkins Kimmel Cancer Center say they have slowed the growth of transplanted human prostate and pancreatic cancer cells by introducing bone marrow cells with a specific gene deletion to induce a novel immune response.

First phase i clinical trial of CRISPR-edited cells for cancer shows cells safe and durable
Following the first US test of CRISPR gene editing in patients with advanced cancer, researchers report these patients experienced no negative side effects and that the engineered T cells persisted in their bodies -- for months.

Zika virus' key into brain cells ID'd, leveraged to block infection and kill cancer cells
Two different UC San Diego research teams identified the same molecule -- αvβ5 integrin -- as Zika virus' key to brain cell entry.

Read More: Cancer Cells News and Cancer Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.