Landmark discovery has magnetic appeal for scientists

December 21, 2011

A fundamental problem that has puzzled generations of scientists has finally been solved after more than 70 years.

An international team of scientists has discovered a subtle electronic effect in magnetite - the most magnetic of all naturally occurring minerals - causes a dramatic change to how this material conducts electricity at very low temperatures.

The discovery gives new insight into the mineral in which mankind discovered magnetism, and it may enable magnetite and similar materials to be exploited in new ways.

The research, published in Nature, was led by the University of Edinburgh in collaboration with the European Synchrotron Radiation Facility (ESRF) in Grenoble, France, where the experiments were conducted.

The magnetic properties of magnetite have been known for more than 2000 years and gave rise to the original concepts of magnets and magnetism. The mineral has also formed the basis for decades of research into magnetic recording and information storage materials.

In 1939, Dutch scientist Evert Verwey discovered that the electrical conductivity of magnetite decreases abruptly and dramatically at low temperatures. At about 125 Kelvin, or minus 150 degrees Celsius, the metallic mineral turns into an insulator. Despite many efforts, until now the reason for this transition has been debated and remained controversial.

When the team of scientists fired an intense X-ray beam at a tiny crystal of magnetite at very low temperatures, they were able to understand the subtle rearrangement of the mineral's chemical structure. Electrons are being trapped within groups of three iron atoms where they can no longer transport an electrical current.

Dr Jon Wright of the ESRF said: "Our main challenge was to obtain a perfect crystal, which meant using one that was tiny, just half the diameter of a human hair. Then we needed to observe subtle changes in this microscopic sample as we lowered the temperature. In Europe, this is only possible at the ESRF, thanks to the extremely high energy of its synchrotron X-rays."

Professor Paul Attfield, of the University of Edinburgh, said: "We have solved a fundamental problem in understanding the original magnetic material, upon which everything we know about magnetism is built. This vital insight into how magnetite is constructed and how it behaves will help in the development of future electronic and magnetic technologies."

###
Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.



University of Edinburgh

Related Magnetism Articles from Brightsurf:

Connecting two classes of unconventional superconductors
The understanding of unconventional superconductivity is one of the most challenging and fascinating tasks of solid-state physics.

Stacking and twisting graphene unlocks a rare form of magnetism
A team of researchers at Columbia University and the University of Washington has discovered that a variety of exotic electronic states, including a rare form of magnetism, can arise in a three-layer graphene structure.

Finding the right colour to control magnets with laser pulses
Scientists have discovered a new way to manipulate magnets with laser light pulses shorter than a trillionth of a second.

Quirky response to magnetism presents quantum physics mystery
In a new study just published and highlighted as an Editor's Suggestion in Physical Review Letters, scientists describe the quirky behavior of one such magnetic topological insulator.

Story tips: Cool smart walls, magnetism twist, fuel cost savings and polymers' impact
ORNL Story Tips: Cool smart walls, magnetism twist, fuel cost savings and polymers' impact, September 2020

When Dirac meets frustrated magnetism
Scientists at the Max Planck Institute of Microstructure Physics have discovered one of the largest anomalous Hall effects (15,506 siemens per centimeter at 2 Kelvin) ever observed in the new compound, KV3Sb5.

Scientists use pressure to make liquid magnetism breakthrough
Scientists have forced a solid magnetic metal into a spin liquid state, which may lead to insights into superconductivity and quantum computing.

Unraveling the magnetism of a graphene triangular flake
Graphene is a diamagnetic material, this is, unable of becoming magnetic.

A twist connecting magnetism and electronic-band topology
Materials that combine topological electronic properties and quantum magnetism are of high current interest, for the quantum many-body physics that can unfold in them and for possible applications in electronic components.

How to induce magnetism in graphene
Graphene, a two-dimensional structure made of carbon, is a material with excellent mechani-cal, electronic and optical properties.

Read More: Magnetism News and Magnetism Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.