Study examines how diving marine mammals manage decompression

December 21, 2011

Any diver returning from ocean depths knows about the hazard of decompression sickness (DCS) or "the bends." As the diver ascends and the ocean pressure decreases, gases that were absorbed by the body during the dive, come out of solution and, if the ascent is too rapid, can cause bubbles to form in the body. DCS causes many symptoms, and its effects may vary from joint pain and rashes to paralysis and death.

But how do marine mammals, whose very survival depends on regular diving, manage to avoid DCS? Do they, indeed, avoid it?

In April 2010, the Woods Hole Oceanographic Institution's Marine Mammal Center (MMC) invited the world's experts in human diving and marine-mammal diving physiology to convene for a three-day workshop to discuss the issue of how marine mammals manage gas under pressure. Twenty-eight researchers discussed and debated the current state of knowledge on diving marine mammal gas kinetics--the rates of the change in the concentration of gases in their bodies.

The workshop resulted in a paper, "Deadly diving? Physiological and behavioural management of decompression stress in diving mammals," which was published Dec. 21, 2011, online in the Proceedings of the Royal Society B.

"Until recently the dogma was that marine mammals have anatomical and physiological and behavioral adaptations to make the bends not a problem," said MMC Director Michael Moore. "There is no evidence that marine mammals get the bends routinely, but a look at the most recent studies suggest that they are actively avoiding rather than simply not having issues with decompression."

Researchers began to question the conventional wisdom after examining beaked whales that had stranded on the Canary Islands in 2002. A necropsy of those animals turned up evidence of damage from gas bubbles. The animals had stranded after exposure to sonar from nearby naval exercises. This led scientists to think that diving marine mammals might deal with the presence of nitrogen bubbles more frequently than previously thought, and that the animals' response strategies might involve physiological trade-offs depending on situational variables. In other words, the animals likely manage their nitrogen load and probably have greater variation in their blood nitrogen levels than previously believed.

Because the animals spend so much time below the ocean's surface, understanding the behavior of diving marine mammals is quite challenging. The use of innovative technology is helping to advance the science. At WHOI, scientists have used a CT scanner to examine marine mammal cadavers at different pressures to better understand the behavior of gases in the lungs and "get some idea at what depth the anatomy is shut off from further pressure-kinetics issues," Moore said. For other studies, Moore and his colleagues were able to acquire a portable veterinary ultrasound unit to look at the presence or absence of gas in live, stranded dolphins.

There's still a lot to be learned, including whether live animals have circulating bubbles in their systems that they are managing. If they do, says Moore, noise impacts and other stressors that push the animal from a normal management situation to an abnormal situation become more of a concern. "When a human diver has some bubble issues, what will they do? They will either climb into a recompression chamber so that they can recompress and then come back more slowly, or they'll just grab another tank and go back down for a while and . . . and just let things sort themselves out. What does a dolphin do normally when it's surfaced? The next things to do is to dive, and the one place you can't do that is in shallow water or most particularly if you are beached."
-end-
The Woods Hole Oceanographic Institution is a private, independent, non-profit organization in Falmouth, Mass., dedicated to marine research, engineering, and higher education. Established in 1930 on a recommendation from the National Academy of Sciences, its primary mission is to understand the ocean and its interaction with the Earth as a whole, and to communicate a basic understanding of the ocean's role in the changing global environment.

Woods Hole Oceanographic Institution

Related Marine Mammals Articles from Brightsurf:

Review examines sexual aggression in mammals
A recent review of published studies in non-human mammals examines 'sexual disturbance,' or male behavior towards a female around mating that can be costly for the female -- for example, that might inflict physical harm or cause mother-offspring separation.

240 mammals help us understand the human genome
A large international consortium led by scientists at Uppsala University and the Broad Institute of MIT and Harvard has sequenced the genome of 130 mammals and analysed the data together with 110 existing genomes to allow scientist to identify which are the important positions in the DNA.

Saving marine life: Novel method quantifies the effects of plastic on marine wildlife
Scientists at Tokyo Institute of Technology together with their international collaborators developed a novel quantitative method to quantify the effects of plastic on marine animals.

Researchers study catastrophic disease events in marine mammals
Viruses were responsible for 72 percent of these events and caused 20 times the number of deaths than bacterial outbreaks.

Marine energy devices likely pose minimal impacts to marine life, report shows
On World Oceans Day, an international team of marine scientists reports that the potential impact of marine renewable energy to marine life is likely small or undetectable.

Marine waste management: Recycling efficiency by marine microbes
It was only relatively recently that tiny, single-celled thaumarchaea were discovered to exist and thrive in the pelagic ocean, where their population size of roughly 1028 (10 billion quintillion) cells makes them one of the most abundant organisms on our planet.

Exploring why males are larger than females among mammals
In most animals, females are larger than males, but in most mammals, males are larger than females.

Among wild mammals too, females live longer
In all human populations, average lifespans are longer for women than for men.

How some mammals pause their pregnancies
Some species of mammals can delay the implantation of their embryos until conditions are better for bearing and rearing offspring.

Melting arctic sea ice linked to emergence of deadly virus in marine mammals
Scientists have linked the decline in Arctic sea ice to the emergence of a deadly virus that could threaten marine mammals in the North Pacific, according to a study from the University of California, Davis.

Read More: Marine Mammals News and Marine Mammals Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.