New insights into how immune system fights atherosclerosis

December 21, 2012

New York, NY (December 21, 2012) -- A study led by Columbia University Medical Center (CUMC) researchers has found that an important branch of the immune system, in reaction to the development of atherosclerotic lesions, mounts a surprisingly robust anti-inflammatory T cell response that helps prevent the disease from progressing. The findings may help inform the design of anti-atherosclerosis vaccines and other therapies that can take advantage of this aspect of the immune system. The study was published today in the online edition of the Journal of Clinical Investigation.

When the body encounters viruses, bacteria, or other potential threats, dendritic cells -- the sentinels of the immune system -- are dispatched to take a sample of the pathogen and present it to T cells. This activates the production of pro-inflammatory effector T cells (which attack the pathogen) and anti-inflammatory regulatory T cells (which keep the pro-inflammatory response in check).

"Normally, the pro-inflammatory response dominates, and that is what people assumed to be the case in atherosclerosis," said study leader Ira Tabas, MD, PhD, the Richard J. Stock Professor, Department of Medicine, and professor of pathology & cell biology (in physiology and cellular biophysics) at CUMC. "However, we found that the T cell response to atherosclerosis is mostly anti-inflammatory."

The researchers, led by postdoctoral scientist Manikandan Subramanian, PhD, used mice whose dendritic cells lacked MYD88, a signaling protein that initiates the cells' maturation. Since immature dendritic cells cannot activate T cells, the elimination of MYD88 effectively disabled the production of both effector and regulatory T cells. The mice were also bred to lack the LDL receptor, leaving them prone to the development of atherosclerosis.

The net effect of these changes in the mice was to increase the size of atherosclerotic lesions. "What this means is that the dominant effect of dendritic cells in the setting of atherosclerosis is to promote the development of protective regulatory T cells," said Dr. Tabas.

Earlier studies had suggested just the opposite: that effector T cells dominate in response to atherosclerosis. "In those studies, researchers disabled dendritic cells at an earlier stage, creating all sorts of compensatory processes," said Dr. Tabas. "That's probably why they came to a different conclusion. In our model, we were able to knock out only the step involved in activating T cells, leaving everything else alone."

The researchers found that T regulatory cells act by suppressing pro-inflammatory effector T cells and macrophages, which was expected. They also identified a new mechanism that directly links regulatory-T-cell activation with protection from atherosclerosis. According to Dr. Tabas, regulatory T cells secrete TGF-beta (a cytokine, or signaling molecule), which suppresses MCP-1 (monocyte chemoattractant protein-1), a protein that recruits monocytes, a type of white blood cell.

"Now we have a specific mechanism that could explain the preclinical success of dendritic vaccines and that provides a new understanding of how these vaccines might be improved," said Dr. Tabas.
-end-
The title of the paper is "Treg-mediated suppression of atherosclerosis requires MYD88 signaling in DCs." The other contributors are Edward Thorp (Northwestern University, Chicago, Illinois), and Goran K. Hansson (Karolinska Hospital, Stockholm, Sweden).

The study was supported by the National Institutes of Health (grant #s HL106019, HL075662, and HL054591) and the Swedish Research Council.

The authors declare no financial or other conflicts of interest.

Columbia University Medical Center provides international leadership in basic, pre-clinical and clinical research; medical and health sciences education; and patient care. The medical center trains future leaders and includes the dedicated work of many physicians, scientists, public health professionals, dentists, and nurses at the College of Physicians and Surgeons, the Mailman School of Public Health, the College of Dental Medicine, the School of Nursing, the biomedical departments of the Graduate School of Arts and Sciences, and allied research centers and institutions. Established in 1767, Columbia's College of Physicians and Surgeons was the first institution in the United States to grant the MD degree and is among the country's most selective medical schools. Columbia University Medical Center is home to the largest medical research enterprise in New York City and State and one of the largest in the United States. www.cumc.columbia.edu

Columbia University Medical Center

Related Immune System Articles from Brightsurf:

How the immune system remembers viruses
For a person to acquire immunity to a disease, T cells must develop into memory cells after contact with the pathogen.

How does the immune system develop in the first days of life?
Researchers highlight the anti-inflammatory response taking place after birth and designed to shield the newborn from infection.

Memory training for the immune system
The immune system will memorize the pathogen after an infection and can therefore react promptly after reinfection with the same pathogen.

Immune system may have another job -- combatting depression
An inflammatory autoimmune response within the central nervous system similar to one linked to neurodegenerative diseases such as multiple sclerosis (MS) has also been found in the spinal fluid of healthy people, according to a new Yale-led study comparing immune system cells in the spinal fluid of MS patients and healthy subjects.

COVID-19: Immune system derails
Contrary to what has been generally assumed so far, a severe course of COVID-19 does not solely result in a strong immune reaction - rather, the immune response is caught in a continuous loop of activation and inhibition.

Immune cell steroids help tumours suppress the immune system, offering new drug targets
Tumours found to evade the immune system by telling immune cells to produce immunosuppressive steroids.

Immune system -- Knocked off balance
Instead of protecting us, the immune system can sometimes go awry, as in the case of autoimmune diseases and allergies.

Too much salt weakens the immune system
A high-salt diet is not only bad for one's blood pressure, but also for the immune system.

Parkinson's and the immune system
Mutations in the Parkin gene are a common cause of hereditary forms of Parkinson's disease.

How an immune system regulator shifts the balance of immune cells
Researchers have provided new insight on the role of cyclic AMP (cAMP) in regulating the immune response.

Read More: Immune System News and Immune System Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.