How stars look young when they're not: The secret of aging well

December 21, 2012

The aging of star clusters is linked more with their lifestyle than with how old they actually are, according to a new NASA/ESA Hubble Space Telescope study coauthored by Steinn Sigurdsson, professor of astronomy and astrophysics at Penn State. "Our observations of star clusters have shown us that, although they all formed over ten billion years ago, some of them are still young at heart," Sigurdsson said. "We now can see how fast the clusters are racing toward their final collapse. It is as if each cluster has its own internal clock, some of which are ticking slower than others." Sigurdsson is a Penn State theorist working in collaboration with the European Research Council's Cosmic-Lab project. The study is published in the current issue of the journal Nature.

Globular clusters are spherical collections of stars, tightly bound to each other by their mutual gravity. The roughly 150 globular clusters in the Milky Way contain many of our galaxy's oldest stars. These 12-to-13 billion-year-old relics of the early universe are nearly as old as the Big Bang. "Although these clusters all formed billions of years ago, we wondered whether some clusters might be aging faster or slower than others," said Francesco Ferraro of the University of Bologna in Italy, the leader of the team that made the discovery. "By studying the distribution of a type of blue star that exists in the clusters, we found that some clusters had indeed evolved much faster over their lifetimes, and we developed a way to measure the rate of their aging."

Star clusters form in a short period of time, so all the stars within them tend to have roughly the same age. Because bright, high-mass stars burn up their fuel quite quickly, and globular clusters are very old, the clusters should contain only low-mass stars within them. But Sigurdsson and his colleagues discovered that, in certain circumstances, stars can be given a new burst of life. "Stars can receive extra fuel that bulks them up and substantially brightens them if one star pulls matter off a neighbor, if two neighboring stars merge together, or if two stars collide," Sigurdsson said.

These reinvigorated stars have a large mass and high brightness. They are called blue stragglers because they are blue in color and their evolution lags behind that of their neighbors. Blue stragglers are the only stars that combine high mass and high brightness within clusters.

Heavier stars sink like sediment toward the center of a cluster as the cluster ages. The high-mass blue stragglers are strongly affected by this process, and their brightness makes them relatively easy for astronomers to observe. To better understand cluster aging, the team mapped the location of blue-straggler stars in 21 globular clusters, as seen in images from the Hubble Space Telescope, the European Southern Observatory's MPG/ESO 2.2-meter telescope, the Canada-France-Hawaii telescope, and the Subaru Telescope of the National Astronomical Observatory of Japan. Hubble provided high-resolution imagery of the crowded centers of 20 of the clusters, while images from ground-based telescopes gave a wider view of their less-busy outer regions.

Analyzing the observational data, the team found that a few clusters appeared young, with blue-straggler stars distributed throughout, while a larger group appeared old, with the blue stragglers clumped in the center. A third group was in the process of aging, with the stars closest to the core migrating inwards first, then stars ever further out progressively sinking towards the center.

"Since these clusters all formed at roughly the same time, this study reveals big differences in the speed of evolution from cluster to cluster," said Barbara Lanzoni at the University of Bologna, a co-author of the study. "In the case of fast-aging clusters, we think that the sedimentation process can be complete within a few hundred million years, while for the slowest it would take several times the current age of the universe."

As a cluster's heaviest stars sink into the center, it eventually experiences a phenomenon called core collapse, where the center of the cluster bunches together extremely densely. The processes leading toward core collapse are rather well understood, and revolve around the number, density and speed of movement of the stars. However, the rate at which they happen was not known until now. "This study provides the first evidence, based totally on data from observations, of how quickly different globular clusters age," Sigurdsson said.
-end-
Funding to Penn State for this research is provided by the Space Science Telescope Institute.

[ Barbara K. Kennedy ]

IMAGES

High-resolution images associated with this research are online at http://science.psu.edu/news-and-events/2012-news/Sigurdsson-12-2012

CONTACTS

Steinn Sigurdsson at Penn State University: (+1) 814-863-6038, steinn@astro.psu.edu

Barbara Kennedy (Penn State PIO): (+1) 814-863-4682, science@psu.edu

Francesco Ferraro at the University of Bologna: (+39) 051-209-5774, francesco.ferraro3@unibo.it

Barbara Lanzoni at the University of Bologna: (+39) 051-209-5792, barbara.lanzoni3@unibo.it

Penn State

Related Aging Articles from Brightsurf:

Surprises in 'active' aging
Aging is a process that affects not only living beings.

Aging-US: 'From Causes of Aging to Death from COVID-19' by Mikhail V. Blagosklonny
Aging-US recently published ''From Causes of Aging to Death from COVID-19'' by Blagosklonny et al. which reported that COVID-19 is not deadly early in life, but mortality increases exponentially with age - which is the strongest predictor of mortality.

Understanding the effect of aging on the genome
EPFL scientists have measured the molecular footprint that aging leaves on various mouse and human tissues.

Muscle aging: Stronger for longer
With life expectancy increasing, age-related diseases are also on the rise, including sarcopenia, the loss of muscle mass due to aging.

Aging memories may not be 'worse, 'just 'different'
A study from the Department of Psychological & Brain Sciences in Arts & Sciences adds nuance to the idea that an aging memory is a poor one and finds a potential correlation between the way people process the boundaries of events and episodic memory.

A new biomarker for the aging brain
Researchers at the RIKEN Center for Biosystems Dynamics Research (BDR) in Japan have identified changes in the aging brain related to blood circulation.

Scientists invented an aging vaccine
A new way to prevent autoimmune diseases associated with aging like atherosclerosis, Alzheimer's disease, and Parkinson's disease was described in the article.

The first roadmap for ovarian aging
Infertility likely stems from age-related decline of the ovaries, but the molecular mechanisms that lead to this decline have been unclear.

Researchers discover new cause of cell aging
New research from the USC Viterbi School of Engineering could be key to our understanding of how the aging process works.

Deep Aging Clocks: The emergence of AI-based biomarkers of aging and longevity
The advent of deep biomarkers of aging, longevity and mortality presents a range of non-obvious applications.

Read More: Aging News and Aging Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.