May the force be with the atomic probe

December 21, 2012

Theoretical physicist Elad Eizner from Ben Gurion University, Israel, and colleagues created models to study the attractive forces affecting atoms located at a wide range of distances from a surface, in the hundreds of nanometers range. Their results, about to be published in EPJ D, show that these forces depend on electron diffusion, regardless of whether the surface is conducting or not. Ultimately, these findings could contribute to designing minimally invasive surface probes.

Bombarding a surface with atoms helps us understand the distribution of its electrons and the structural arrangement of the surface atoms. The authors focused on understanding how a long-range force-- referred to as the van der Waals-Casimir-Polder (vdW-CP) force -- present between an atom and a surface allow us to distinguish surface characteristics on the basis of their conductivity.

A key factor in understanding the behaviour of the force, they realised, is the size of the electron cloud surrounding an impurity charge in the system. The latter depends both on the electrons' conductivity and their capability to diffuse in and along the surface.

They devised one model for the diffusion of the electronic charge in the bulk of the material and another one in the near-surface region. They tested their models on both conducting and non-conducting surfaces. They were thus able to explain why the atom-surface force shows a continuous transition in terms of conductivity between both types of surfaces.

For distances comparable to the size of the electron cloud spread, the strength of the vdW-CP attraction force, they found, can help distinguish between bulk and surface electrons diffusion. It could therefore be used as a probe. Potential applications exist, for example, in quantum computer hardware architectures focusing on the interface between different carriers of quantum bits of information.
-end-
Reference:

E.Eizner, B. Horovitz, and C. Henkel (2012), Van der Waals-Casimir-Polder interaction of an atom with a composite surface, European Physical Journal D, DOI: 10.1140/epjd/e2012-30294-x

For more information, please visit www.epj.org

The full-text article is available to journalists on request.

Springer

Related Conductivity Articles from Brightsurf:

Clemson researchers decode thermal conductivity with light
Clemson researchers examine a highly efficient thermoelectric material in a new way - by using light.

Collaboration sparks new model for ceramic conductivity
As insulators, metal oxides - also known as ceramics - may not seem like obvious candidates for electrical conductivity.

Surface waves can help nanostructured devices keep their cool
A research team led by The Institute of Industrial Science, The University of Tokyo demonstrated that hybrid surface waves called surface phonon-polaritons provide enhanced thermal conductivity in nanoscale membranes.

Making plastic more transparent while also adding electrical conductivity
In an effort to improve large touchscreens, LED light panels and window-mounted infrared solar cells, researchers at the University of Michigan have made plastic conductive while also making it more transparent.

New high proton conductors with inherently oxygen deficient layers open sustainable future
Scientists at Tokyo Institute of Technology (Tokyo Tech) and the Australian Nuclear Science and Technology Organisation (ANSTO), discover a new family of high proton-conducting materials -- 'the hexagonal perovskite-related oxides' -- and shed light on the underlying mechanisms responsible for their conductivity.

Extremely low thermal conductivity in 1D soft chain structure BiSeX (X = Br, I)
Researchers found a new sort of simple one-dimensional (1D) crystal structured bismuth selenohalides (BiSeX, X = Br, I) with extremely low thermal conductivity.

Minimizing thermal conductivity of crystalline material with optimal nanostructure
Japanese researchers successfully minimized thermal conductivity by designing, fabricating, and evaluating the optimal nanostructure-multilayer materials through materials informatics (MI), which combines machine learning and molecular simulation.

Skoltech researchers use machine learning to aid oil production
Skoltech scientists and their industry colleagues have found a way to use machine learning to accurately predict rock thermal conductivity, a crucial parameter for enhanced oil recovery.

Scientists measured electrical conductivity of pure interfacial water
Skoltech scientists in collaboration with researchers from the University of Stuttgart, the Karlsruhe Institute of Technology and the Russian Quantum Center achieved the first systematic experimental measurements of the electrical conductivity of pure interfacial water, hence producing new results significantly extending our knowledge of interfacial water.

User research at BESSY II: How new materials increase the efficiency of direct ethanol fuel cells
A group from Brazil and an HZB team have investigated a novel composite membrane for ethanol fuel cells.

Read More: Conductivity News and Conductivity Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.