Container-grown conifers benefit from irrigation based on daily water use

December 21, 2015

EAST LANSING, MI - Competition for limited water resources is challenging producers of container-grown nursery plants to investigate alternative irrigation strategies. One water-conserving method available to nurseries is scheduling irrigation in response to plants' daily water use (DWU), a technique that has been shown to reduce water applications between 6% and 75% without negatively impacting the growth of ornamental shrubs.

In a study in the October 2015 issue of HortScience, scientists from Michigan State University said the runoff from nursery operations can also contain nitrate-nitrogen and phosphate-phosphorous, among other contaminants. They noted that previous research has shown decreased nutrient loading with DWU-based irrigation management systems. The scientists designed a study of four conifer varieties to determine the effects of four DWU-based irrigation treatments on plant performance and runoff water volume and quality.

Rooted cuttings of four conifers were given four irrigation treatments: a control irrigation of 0.75 acre-inch per day, irrigation applied to replace 100% daily water use, applications alternating 100% with 75% DWU in a 2-day cycle, and a 3-day application cycle replacing 100% DWU on the first day and 75% DWU on the second and third days. Irrigation volume, plant growth, runoff volume, and nitrate and phosphate concentrations for all treatments were analyzed.

Results showed that, compared with the control, irrigation applications (averaged over both years of the study) were reduced by 22%, 24%, and 28%, in the 100, 100-75, and 100-75-75 DWU treatments, respectively. Plant growth for the DWU based treatments was the same or greater than the control.

The 100% and 75% DWU irrigation applications reduced runoff NO3--N loading by 36% and 67%, and PO43--P loading by 38% and 57% when averaged over all measurement days.

"Not only do these outcomes translate to less eutrophication potential, but it could also save growers money in the form of fewer nutrient inputs and potentially lower energy costs for the pumping and distribution of water," the authors said.
-end-
The complete study and abstract are available on the ASHS HortScience electronic journal web site: http://hortsci.ashspublications.org/content/50/10/1553.abstract

Founded in 1903, the American Society for Horticultural Science (ASHS) is the largest organization dedicated to advancing all facets of horticultural research, education, and application. More information at ashs.org

American Society for Horticultural Science

Related Plant Growth Articles from Brightsurf:

Microbes help unlock phosphorus for plant growth
A research team led by the University of Washington and Pacific Northwest National Laboratory has shown that microbes taken from trees growing beside pristine mountain-fed streams in Western Washington could make phosphorus trapped in soils more accessible to agricultural crops.

Plant research seals importance of microbes for survival and growth
Scientists have revealed that plants have a 'sealing' mechanism supported by microbes in the root that are vital for the intake of nutrients for survival and growth.

Plasma scientists optimize plant growth and yield
At the American Physical Society's Gaseous Electronics Conference, researchers described techniques for delivering plasma to seeds and plants and identifying which plants are most likely to respond.

Antagonistic genes modify rice plant growth
Rice stems lengthen when a newly identified gene activates during flooding.

Plant living with only one leaf reveals fundamental genetics of plant growth
Clinging to the walls of tropical caves is a type of plant with a single leaf that continues to grow larger for as long as the plant survives.

Success in promoting plant growth for biodiesel
Scientists of Waseda University in Japan succeeded in promoting plant growth and increasing seed yield by heterologous expression of protein from Arabidopsis (artificially modified high-speed motor protein) in Camelina sativa, which is expected as a useful plant for biodiesel.

Biologists unravel tangled mystery of plant cell growth
When cells don't divide into proper copies of themselves, living things fail to grow as they should.

The balancing act between plant growth and defense
Kumamoto University researchers have pinpointed the mechanism that regulates the balance between plant growth and defense.

A tiny arctic shrub reveals secrets of plant growth on Svalbard
It's not easy being a tiny willow on the wind-and snow-blasted islands of the Norwegian territory of Svalbard.

Newly discovered driver of plant cell growth contradicts current theories
The shape and growth of plant cells may not rely on increased fluidic pressure, or turgor, inside the cell as previously believed.

Read More: Plant Growth News and Plant Growth Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.