Creativity leads to measuring ultrafast, thin photodetector

December 21, 2015

ITHACA, N.Y. - Making an incredibly fast photodetector is one thing, but actually measuring its speed is another.

Graduate student Haining Wang came up with an inventive way of measuring the near-instantaneous electrical current generated using a light detector that he and a team of Cornell engineers made using an atomically thin material.

The team, headed by Farhan Rana, associate professor in the School of Electrical and Computer Engineering, measured the ultrafast response of their two-dimensional photodetector using a strobe-like process called two-pulse photovoltage correlation.

The team's paper, "Ultrafast response of monolayer molybdenum disulfide photodetectors," was published in Nature Communications.

"It was very clever," Rana said of Wang's idea. "He came up with this idea of essentially hitting the device with an optical pulse [to initiate an electrical charge] and after a small delay, hitting it with the pulse again. By varying the time between the first and second pulse, and looking at the response of the device as a result, you can sort of see what the intrinsic speed of the device is."

Rana's team used a 3-atoms-thick sheet of molybdenum disulfide (MoS2), a material Rana and others have tested previously in photodetection studies. Photodetection is used in various high-speed optoelectronic applications, including optical fiber networks.

According to Wang's experimentation, the MoS2 photodetector had intrinsic response times as short as 3 picoseconds; a picosecond is one-trillionth of a second. Co-author Wang said the speed at which the MoS2 detector responds is vastly superior to current technology, and is partly due to the extremely short distance the charges generated by light must travel before making it out of the device and into the external electrical circuit.

"State-of-the-art optical communication links work at around 10 GHz per channel, so if you make 10 channels in parallel, you have a 100 GHz optical communication link," he said. "We find that this single device can work up to 300 GHz, which is an amazing speed."

Wang also said that, despite being just 3-atoms thick, MoS2 is "extremely easy to make" and relatively inexpensive, adding to its appeal.

As with all photodetectors, however, the downside is the low quantum efficiency, which is a measure of the number of charges generated by the detector in the external circuit per incident photon.

In the Rana team's work, only a small percentage of the light-generated charges - 1 to 2 percent - were able to escape the photodetector and make it into the external circuit; most recombined inside the device, producing heat. Market-available photodetector materials such as silicon and gallium arsenide, while generally much slower, have efficiencies of anywhere from 50 to 90 percent.

"That's the tradeoff of these devices," Rana said. "Every photodetector ever made has always had to face the efficiency-speed tradeoff."

Further research by the group will include a discovery made by both Rana's team and a research group at the University of California, Berkeley: coating the sample with a chemical that will "basically kill the recombination completely," Rana said.

"So you have to play around with these material surfaces and make sure you're attaching the right molecules and atoms to it on the outside," Rana said.

The Berkeley group reported in November an efficiency of 95 percent using their chemically coated MoS2 photodetector.

Rana said the photodetection technology will play a major role in emerging fields, such as LiFi - using light as a source of wireless communication. He said windows and walls could be coated with atomically thin layers of material that would interact with light and carry Internet signals.
Other co-authors include former graduate students Changjian Zhang and Weimin Chan, and Sandip Tiwari, the Charles N. Mellowes Professor of Engineering.

Their research was supported by the Cornell Center for Materials Research, under a National Science Foundation grant, the Air Force Office of Scientific Research, the Office of Naval Research, as well as an NSF grant to the Cornell NanoScale Science and Technology Facility.

Cornell University

Related Molybdenum Disulfide Articles from Brightsurf:

Research lays groundwork for ultra-thin, energy efficient photodetector on glass
Though we may not always realize it, photodetectors contribute greatly to the convenience of modern life.

An improved wearable, stretchable gas sensor using nanocomposites
A stretchable, wearable gas sensor for environmental sensing has been developed and tested by researchers at Penn State, Northeastern University and five universities in China.

The art of making tiny holes
It sounds like a magic trick: A highly charged ion penetrates several layers of a material.

Room temperature superconductivity creeping toward possibility
The possibility of achieving room temperature superconductivity took a tiny step forward with a recent discovery by a team of Penn State physicists and materials scientists.

Ultrafast optical response and ablation mechanisms of molybdenum disulfide
Most studies on the electron dynamics of molybdenum disulfide examined levels below the damage threshold.

Development of electrode material improving the efficiency of salinity gradient energy
Dr. Jeong Nam-Jo of Korea Institute of Energy Research(KIER) Marine Energy Convergence and Integration Research Team developed synthesis technologies of electrode material that can directly synthesize molybdenum disulfide thin films on the electrode current collector surface to contribute improving the efficiency and economic feasibility of salt gradient power generation using reverse electrodialysis.

Molybdenum telluride nanosheets enable selective electrochemical production of hydrogen peroxide
Selective electrochemical production of hydrogen peroxide (H2O2) from oxygen reduction reaction in acids is highly desirable but challenging.

Superhard candy -- scientists cracked the complex crystal structure of molybdenum borides
In their search for new superhard compounds, researchers carried out a prediction of stable molybdenum borides and their crystal structures.

Russian scientists found an effective way to obtain fuel for hydrogen engines
A catalyst is needed for a chemical process that releases hydrogen from an H2O molecule.

Silver sawtooth creates valley-coherent light for nanophotonics
Scientists at the University of Groningen used a silver sawtooth nanoslit array to produce valley-coherent photoluminescence in two-dimensional tungsten disulfide flakes at room temperature.

Read More: Molybdenum Disulfide News and Molybdenum Disulfide Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to