Nav: Home

Scientists find genes that set into motion age-related macular degeneration

December 21, 2015

In one of the latest examples of precision medicine, teams of geneticists from nine countries, involving more than 100 scientists, analyzed the genes of more than 33,000 individuals in the hope of finding genetic variations responsible for age-related macular degeneration (AMD), the leading cause of vision loss among people age 50 or older. Their research, involving complex computational analysis of more than 12 million genetic variations across the human genome, identified 52 variations associated with the disease. By identifying these genetic variations, spread across 34 gene regions, scientists are a step closer to developing diagnostics that identify which patients are at high risk for acquiring the disease and formulating therapeutics either to prevent or treat the disease caused by these genetic variations.

Leading the coordination of the massive, multi-national research effort conducted by the International AMD Genomics Consortium was Case Western Reserve University School of Medicine's Jonathan L. Haines, PhD, whose team also helped guide the complex computational analysis of the data from those study participants with advanced AMD and those without AMD. Their findings will appear in the Dec. 15, 2015 edition of Nature Genetics.

"The enormity and complexity of studying the genetics behind AMD required a large-scale computational analysis study of the disease that could only be performed by bringing together the world's leading researchers," said Haines. Haines is the chair of Epidemiology and Biostatics and the Mary W. Sheldon, MD, Professor of Genomic Sciences, as well as the director of the Institute for Computational Biology -- a joint venture between Case Western Reserve University, University Hospitals Case Medical Center and Cleveland Clinic.

As part of their research, consortium investigators chose to study both common and rare genetic variations. Genetic variations are the DNA sequence differences between individuals. Genetic variations affect physical traits such as eye color or susceptibility to specific diseases. Because of the millions of genetic variations present in the genome, it took genetic computational analysis from multiple centers to pinpoint the variations specific to AMD.

Using sophisticated computer programs, scientists were able to sort and synthesize more than 12 million genetic variations culled from the study's more than 33,000 individual participants. Moreover, they applied another dynamic big data science technique -- computational pathway analysis -- whereby statistically significant variations are grouped together based on the genes they are associated with and the biological pathways those genes affect. Computational pathway analysis reveals how these gene variation groupings may affect biological events leading to AMD.

The combined computational analysis of the entire consortium identified, for the first time, a genetic variant specific to one subtype of AMD. The group identified one genetic variant located near the MMP9 gene region that is implicated only in the particularly damaging wet form of AMD.

AMD comes in dry and wet forms. Both damage vision by destroying cells in the macula, the small center of the retina in the back of the eye. It's the macula's job to focus images coming through the eye, which are then converted to electrical signals and sent through the optic nerve to the brain. Localized inflammation in the retina triggers the development of drusen, which are fatty, lipid-rich deposits that accumulate in the eye as a natural part of the aging process. Enough inflammation and drusen accumulation will destroy photoreceptors in the back of the eye that receive the electrical signals from the retina, causing vision loss.

Dry AMD causes loss of cells in the macula and progresses more slowly. The wet form progresses rapidly and causes an abnormal growth of blood vessels within the macula. These blood vessels impair vision by leaking fluid into the eye and are the result of uncontrolled vascular endothelial growth factor (VEGF) spurring development of new blood vessels. The consortium's big-data solution paid off when they found genetic variations in the region near the MMP9 gene that exclusively affect the wet form of AMD. What MMP9 does is trigger VEGF to produce blood vessel growth in the eye. The finding suggests an explanation for why anti-VEGF therapy is not as effective in many AMD patients whose genetic make-up with the MMP9 gene variation makes them more susceptible to the disease's progression. MMP9-induced VEGF production might overwhelm the anti-VEGF therapy's effect.

"Almost every study up until now has only looked at common variations that are pervasive in the population," said a lead author Jessica N. Cooke Bailey, PhD, a post-doctoral fellow in the School of Medicine's Department of Epidemiology and Biostatics. "Our robust big data techniques allowed us to look for the rare variations that occur, for example, in one in 1,000 individuals. In the genetics world, those really rare genetic variations are important because those significantly increase the risk of a disease such as AMD in individuals who have them."

Additionally, the consortium's study located 10 variations pointing to genes involved in maintaining the extracellular matrix within the eye. The matrix is made up of nonliving material among cells that provides structural support in the eye. Seven of these 10 variations affecting the extracellular matrix point to a wet AMD subtype with no early-stage symptoms and with rapid progression.

"The possible connection between AMD and these extracellular matrix genes may allow for predictive genetic tests and more effective therapies for people with this type of AMD," Cooke Bailey said.

As for future research, next steps will be functional mechanistic studies to determine why and how key gene variations activate to cause AMD.

"More than 10 million Americans are affected by AMD," Cooke Bailey says. "More than 2 million individuals over the age of 50 have the advanced disease. AMD also adds billions of dollars to health care costs. With more people entering their senior years, the AMD-affected population will only continue to grow, which makes this research particularly crucial."
-end-
The study was funded in part by NEI Intramural Research Program and by NEI grants EY023164, EY012118, EY022310, T32 EY023194, P30-EY005722, EY0022005, EY016862, and EY022310. The study also was supported by NIH National Human Genome Research Institute grants HG006513, HG007022, and 1U01HG006389; National Institute on Aging grants AG019085; and National Center for Advancing Translational Sciences grant UL1TR000427. Dr. Cooke Bailey is supported in part by a PhARMA Informatics Postdoctoral Fellowship.

Case Western Reserve University

Related Blood Vessels Articles:

Study: Use of prefabricated blood vessels may revolutionize root canals
Researchers at OHSU in Portland, Oregon, have developed a process by which they can engineer new blood vessels in teeth, creating better long-term outcomes for root canal patients and clinicians.
New findings on formation and malformation of blood vessels
In diseases like cancer, diabetes, rheumatism and stroke, a disorder develops in the blood vessels that exacerbates the condition and obstructs treatment.
Targeting blood vessels to improve cancer immunotherapy
EPFL scientists have improved the efficacy of cancer immunotherapy by blocking two proteins that regulate the growth of tumor blood vessels.
Reprogrammed blood vessels promote cancer spread
Tumor cells use the bloodstream to spread in the body.
Neurons modulate the growth of blood vessels
A team of researchers at Karlsruhe Institute of Technology shake at the foundations of a dogma of cell biology.
Sensor for blood flow discovered in blood vessels
The PIEZO1 cation channel translates mechanical stimulus into a molecular response to control the diameter of blood vessels.
Blood vessels control brain growth
Blood vessels play a vital role in stem cell reproduction, enabling the brain to grow and develop in the womb, reveals new UCL research in mice.
No blood vessels without cloche
After 20 years of searching, scientists discover the mystic gene controlling vessel and blood cell growth in the embryo.
New way of growing blood vessels could boost regenerative medicine
Growing tissues and organs in the lab for transplantation into patients could become easier after scientists discovered an effective way to produce three-dimensional networks of blood vessels, vital for tissue survival yet a current stumbling block in regenerative medicine.
Regenerating blood vessels gets $2.7 million grant
Biomedical engineers in the Cockrell School of Engineering at The University of Texas at Austin have received $2.7 million in funding to advance a treatment that regenerates blood vessels.

Related Blood Vessels Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...