Nav: Home

The scientific benefits of Rudolph's red nose

December 21, 2015

HANOVER, N.H. - Dec. 21, 2015 - We're all familiar with the story of Rudolph the Red-Nosed Reindeer by Robert L. May (a class of 1926 Dartmouth alumnus) but scientifically speaking, what are the optical benefits of a shiny red nose on a foggy Christmas Eve?

In a paper just published by Frontiers for Young Minds, Nathaniel J. Dominy, Professor of Anthropology at Dartmouth, explores this very question. By citing research by other scientists on the unique eyes and vision of Arctic reindeer, Dominy explains why Rudolph is able to lead Santa and his team of eight tiny reindeer through the thick Arctic fog.

Dominy points out that Arctic reindeer (scientific name Rangifer tarandus tarandus) can see ultraviolet light, which is invisible to humans and most mammals--a trait that comes especially handy in mid-winter when the sun is low on the horizon and the high scattered light from the atmosphere is mainly blueish and ultraviolet. In addition, the reflective tissue (tapetum lucidum) in reindeer eyes changes from a rich golden color during the summer months to a deep blue color during the winter months. This tissue (which causes eye shine at night) helps nocturnal animals see in the dark, and a blue one is expected to improve their ability to see blue light. Yet, fog extinguishes blue light more readily than red light, which may make it especially difficult for Santa's reindeer to see blue effectively, never mind fly.

This is where Rudolph's luminescent (glowing) nose comes into play, as it serves as an excellent fog light for navigating his fellow reindeer. Given that the redness of Rudolph's nose is similar to red holly berries, Dominy was able to estimate the color of light emitted from Rudolph's nose by measuring the color of holly berries. He found that Rudolph's nose is probably the maximum level of redness that mammals are able to see, which may explain why Rudolph's nose is effective as a fog light.

According to Dominy, Rudolph's nose also poses a problem. Reindeer noses are extremely vascular, which causes them to lose body heat through their noses. A glowing nose could cause excessive heat loss for Rudolph, putting him at risk of hypothermia. "It is therefore imperative for children to provide high-calorie foods to help Rudolph replenish his energetic reserves on Christmas Eve," says Dominy. As a result of the unique properties of Rudolph, it is no wonder that with a nose so bright, he is able to effectively guide Santa's sleigh.
-end-
Nathaniel J. Dominy is available to comment at: nathaniel.j.dominy@dartmouth.edu

Note to editors: Hi-res images of Rudolph are available.

Broadcast studios: Dartmouth has TV and radio studios available for interviews. For more information, visit: http://communications.dartmouth.edu/media/broadcast-studios

Dartmouth College

Related Color Articles:

Recovering color images from scattered light
Engineers at Duke University have developed a method for extracting a color image from a single exposure of light scattered through a mostly opaque material.
Deciphering how the brain encodes color and shape
There are hundreds of thousands of distinct colors and shapes that a person can distinguish visually, but how does the brain process all of this information?
Fish-inspired material changes color using nanocolumns
Inspired by the flashing colors of the neon tetra fish, researchers have developed a technique for changing the color of a material by manipulating the orientation of nanostructured columns in the material.
Iridescent color from clear droplets
Under the right conditions, ordinary clear water droplets on a transparent surface can produce brilliant colors, without the addition of inks or dyes.
Comparing antioxidants levels in tomatoes of different color
Greater levels of specific antioxidants were associated with particular colorations of tomato fruit.
Turning a porous material's color on and off with acid
Stable, color-changing compound shows potential for electronics, sensors and gas storage.
Color coded -- matching taste with color
Color can impact the taste of food, and our experiences and expectations can affect how we taste food, according to Penn State researchers, who suggest this may have implications for how food and beverage industries should market their products.
Discovery of a simplest mechanism for color detection
Color vision, ocular color detection is achieved with complicated neural mechanisms in the eyes.
Do spiders have a favorite color?
Scientists recently discovered the aptly named peacock jumping spiders have the color vision needed to appreciate the male's gaudy display.
Tiny spiders, big color
There's plenty that's striking about Phoroncidia rubroargentea, a species of spider native to Madagascar, starting with their size -- at just three millimeters, they're barely larger than a few grains of salt.
More Color News and Color Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab